Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43203    https://doi.org/10.1007/s11467-023-1376-1
Tunable near-infrared light emission from layered TiS3 nanoribbons
Junrong Zhang1,2, Cheng Chen1,2, Yanming Wang1,2, Yang Lu1,2, Honghong Li3, Xingang Hou2, Yaning Liang2,4, Long Fang2,5, Du Xiang3(), Kai Zhang1,2(), Junyong Wang1,2()
1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
2. CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
3. Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China
4. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
5. College of Energy & Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
 Download: PDF(6319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The low-dimensional light source shows promise in photonic integrated circuits. Stable layered van der Waals material that exhibits luminescence in the near-infrared optical communication waveband is an essential component in on-chip light sources. Herein, the tunable near-infrared photoluminescence (PL) of the air-stable layered titanium trisulfide (TiS3) is reported. Compared with iodine particles as a transport agent, TiS3 grown by chemical vapor transport using sulfur powder as a transport agent has fewer sulfur vacancies, which increases the luminescence intensity by an order of magnitude. The PL emission wavelength can be regulated in the near-infrared regime by thickness control. In addition, we observed an interesting anisotropic strain response of PL in layered TiS3 nanoribbon: a blue shift of PL was achieved when the uniaxial tensile strain was applied along the b-axis, while a negligible shift was observed when the strain was applied along the a-axis. Our work reveals the tunable near-infrared luminescent properties of TiS3 nanoribbons, suggesting their potential applications as near-infrared light sources in photonic integrated circuits.

Keywords titanium trisulfide      near-infrared luminescence      S-vacancy      tunability      strain engineering     
Corresponding Author(s): Du Xiang,Kai Zhang,Junyong Wang   
Issue Date: 05 February 2024
 Cite this article:   
Junrong Zhang,Cheng Chen,Yanming Wang, et al. Tunable near-infrared light emission from layered TiS3 nanoribbons[J]. Front. Phys. , 2024, 19(4): 43203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1376-1
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43203
Fig.1  Optical properties of quasi-1D TiS3 nanoribbons. (a) Atomic structure model of TiS3. (b) XRD patterns of the TiS3 nanoribbons. (c) Polarized Raman intensity mapping of TiS3 nanoribbon as a function of Raman shift and incident angle. Here the polarization direction of excitation (E) was parallel to the direction of detection (D). (d) UV-vis absorption spectrum of TiS3 nanoribbon at room temperature, the inset is Tacu plot of TiS3 nanoribbon extracted from the absorption spectrum. (e) Photoluminescence spectra of TiS3 nanoribbon under various excitation powers at 300 K. (f) Polar plot of the polarized photoluminescence, cps: counts per second.
Fig.2  Tune the PL emission intensity of TiS3 nanoribbons by defect engineering. (a) The SEM image of TiS3?x. (b) The SEM image of TiS3. (c, d) High-resolution XPS spectra of S and Ti core level spectra of TiS3?x and TiS3, respectively. (e, f) PL spectra and intensity of TiS3?x and TiS3.
Fig.3  PL emissions of TiS3 nanoribbons by thickness regulation. (a) Thickness dependence of the PL spectra of TiS3 nanoribbons. (b) Thickness dependence of TiS3 band gap. (c) PL spectra of TiS3 nanoribbons with a graded thickness. (d) The height profile of the thickness of the flake in (c) and the inset illustration is the AFM image.
Fig.4  Anisotropic response of PL spectra of TiS3 nanoribbons under tensile strain. (a) Schematic diagram of the strain experiment and home-built setup. Strains are applied along the a-axis (perpendicular to the chain direction, orange arrow) and the b-axis (along the chain direction, blue arrow), respectively. (b) Raman and PL spectra of TiS3 nanoribbon with the strain applied along the b-axis. (c) Raman and PL spectra of TiS3 nanoribbon with the strain applied along the a-axis. (d) Schematic diagram of the existence of the wrinkle along the b-axis direction in TiS3 nanoribbon. (e) Raman and PL spectra of the wrinkled TiS3 nanoribbon.
1 Famà S. , Colace L. , Masini G. , Assanto G. , C. Luan H. . High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett., 2002, 81(4): 586
https://doi.org/10.1063/1.1496492
2 A. B. Miller D. . Device requirements for optical interconnects to silicon chips. Proc. IEEE, 2009, 97(7): 1166
https://doi.org/10.1109/JPROC.2009.2014298
3 Shacham A. , Bergman K. , P. Carloni L. . Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput., 2008, 57(9): 1246
https://doi.org/10.1109/TC.2008.78
4 Streshinsky M. , Ding R. , Liu Y. , Novack A. , Galland C. , E. J. Lim A. , Guo-Qiang Lo P. , Baehr-Jones T. , Hochberg M. . The road to affordable, large-scale silicon photonics. Opt. Photonics News, 2013, 24(9): 32
https://doi.org/10.1364/OPN.24.9.000032
5 Yang J. , Tang M. , Chen S. , Liu H. . From past to future: On-chip laser sources for photonic integrated circuits. Light Sci. Appl., 2023, 12(1): 16
https://doi.org/10.1038/s41377-022-01006-0
6 C. Yue W. , J. Yao P. , X. Xu L. , Ming H. . All-dielectric bowtie waveguide with deep subwavelength mode confinement. Front. Phys., 2018, 13(4): 134207
https://doi.org/10.1007/s11467-018-0803-1
7 S. Liu D. , Wu J. , Xu H. , Wang Z. . Emerging light-emitting materials for photonic integration. Adv. Mater., 2021, 33(4): 2003733
https://doi.org/10.1002/adma.202003733
8 You J. , Luo Y. , Yang J. , Zhang J. , Yin K. , Wei K. , Zheng X. , Jiang T. . Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev., 2020, 14(12): 2000239
https://doi.org/10.1002/lpor.202000239
9 B. Qin C. , L. Liang X. , P. Han S. , F. Zhang G. , Y. Chen R. , Y. Hu J. , T. Xiao L. , T. Jia S. . Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation. Front. Phys., 2021, 16(1): 12501
https://doi.org/10.1007/s11467-020-0995-z
10 F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
11 S. Sundaram R. , Engel M. , Lombardo A. , Krupke R. , C. Ferrari A. , Avouris P. , Steiner M. . Electroluminescence in single layer MoS2. Nano Lett., 2013, 13(4): 1416
https://doi.org/10.1021/nl400516a
12 H. Lien D. , Z. Uddin S. , Yeh M. , Amani M. , Kim H. , W. III Ager J. , Yablonovitch E. , Javey A. . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468
https://doi.org/10.1126/science.aaw8053
13 Paur M. , J. Molina-Mendoza A. , Bratschitsch R. , Watanabe K. , Taniguchi T. , Mueller T. . Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun., 2019, 10(1): 1709
https://doi.org/10.1038/s41467-019-09781-y
14 Wang S. , Wang J. , Zhao W. , Giustiniano F. , Chu L. , Verzhbitskiy I. , Zhou Yong J. , Eda G. . Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett., 2017, 17(8): 5156
https://doi.org/10.1021/acs.nanolett.7b02617
15 Feng J. , Li Y. , Zhang J. , Tang Y. , Sun H. , Gan L. , Z. Ning C. . Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field. Sci. Adv., 2022, 8(5): eabl5134
https://doi.org/10.1126/sciadv.abl5134
16 H. Lien D. , Amani M. , B. Desai S. , H. Ahn G. , Han K. , H. He J. , W. III Ager J. , C. Wu M. , Javey A. . Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun., 2018, 9(1): 1229
https://doi.org/10.1038/s41467-018-03218-8
17 Gupta N. , Kim H. , S. Azar N. , Z. Uddin S. , H. Lien D. , B. Crozier K. , Javey A. . Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett., 2022, 22(3): 1294
https://doi.org/10.1021/acs.nanolett.1c04557
18 Higashitarumizu N. , Tajima S. , Kim J. , Cai M. , Javey A. . Long operating lifetime mid-infrared LEDs based on black phosphorus. Nat. Commun., 2023, 14(1): 4845
https://doi.org/10.1038/s41467-023-40602-5
19 Wang Y. , Yu Q. , Li J. , Wang J. , Zhang K. . Insight into the growth mechanism of black phosphorus. Front. Phys., 2023, 18(4): 43603
https://doi.org/10.1007/s11467-023-1265-7
20 Ruppert C. , Aslan B. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
https://doi.org/10.1021/nl502557g
21 Q. Bie Y.Grosso G.Heuck M.M. Furchi M.Cao Y.Zheng J.Bunandar D.Navarro-Moratalla E.Zhou L.K. Efetov D.Taniguchi T.Watanabe K.Kong J.Englund D.Jarillo-Herrero P., A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits, Nat. Nanotechnol. 12(12), 1124 (2017)
22 Yang J. , Xu R. , Pei J. , W. Myint Y. , Wang F. , Wang Z. , Zhang S. , Yu Z. , Lu Y. . Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl., 2015, 4(7): e312
https://doi.org/10.1038/lsa.2015.85
23 Shu H. . Highly-anisotropic carrier transport and optical properties of two-dimensional titanium trisulfide. J. Mater. Sci., 2022, 57(5): 3486
https://doi.org/10.1007/s10853-022-06884-8
24 Lian Z. , Jiang Z. , Wang T. , Blei M. , Qin Y. , Washington M. , M. Lu T. , Tongay S. , Zhang S. , F. Shi S. . Anisotropic band structure of TiS3 nanoribbon revealed by polarized photocurrent spectroscopy. Appl. Phys. Lett., 2020, 117(7): 073101
https://doi.org/10.1063/5.0019828
25 Dai J. , C. Zeng X. . Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. Int. Ed., 2015, 54(26): 7572
https://doi.org/10.1002/anie.201502107
26 Jin Y. , Li X. , Yang J. . Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys., 2015, 17(28): 18665
https://doi.org/10.1039/C5CP02813B
27 J. Ferrer I. , R. Ares J. , M. Clamagirand J. , Barawi M. , Sánchez C. . Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535: 398
https://doi.org/10.1016/j.tsf.2012.10.033
28 O. Island J. , Barawi M. , Biele R. , Almazán A. , M. Clamagirand J. , R. Ares J. , Sánchez C. , S. J. van der Zant H. , V. Álvarez J. , D’Agosta R. , J. Ferrer I. , Castellanos-Gomez A. . TiS3 transistors with tailored morphology and electrical properties. Adv. Mater., 2015, 27(16): 2595
https://doi.org/10.1002/adma.201405632
29 Khatibi A. , H. Godiksen R. , B. Basuvalingam S. , Pellegrino D. , A. Bol A. , Shokri B. , G. Curto A. . Anisotropic infrared light emission from quasi-1D layered TiS3. 2D Mater., 2019, 7(1): 015022
https://doi.org/10.1088/2053-1583/ab57ef
30 Tian Z. , Guo X. , Wang D. , Sun D. , Zhang S. , Bu K. , Zhao W. , Huang F. . Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater., 2020, 30(21): 2001286
https://doi.org/10.1002/adfm.202001286
31 Wei Y. , Zhou Z. , Long R. . Defects slow down nonradiative electron–hole recombination in TiS3 nanoribbons: A time-domain ab initio study. J. Phys. Chem. Lett., 2017, 8(18): 4522
https://doi.org/10.1021/acs.jpclett.7b02099
32 Wu K. , Torun E. , Sahin H. , Chen B. , Fan X. , Pant A. , Parsons Wright D. , Aoki T. , M. Peeters F. , Soignard E. , Tongay S. . Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nat. Commun., 2016, 7(1): 12952
https://doi.org/10.1038/ncomms12952
33 Endo K.Ihara H.Watanabe K.I. Gonda S., XPS study of one-dimensional compounds: TiS3, J. Solid State Chem. 44(2), 268 (1982)
34 S. Shkvarin A. , M. Yarmoshenko Y. , V. Yablonskikh M. , I. Merentsov A. , N. Titov A. . An X-ray spectrscopy study of the electronic structure of TiS3. J. Struct. Chem., 2014, 55(6): 1039
https://doi.org/10.1134/S0022476614060067
35 E. Fleet M. , L. Harmer S. , Liu X. , W. Nesbitt H. . Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci., 2005, 584(2−3): 133
https://doi.org/10.1016/j.susc.2005.03.048
36 L. Li X. , P. Han W. , B. Wu J. , F. Qiao X. , Zhang J. , H. Tan P. . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
https://doi.org/10.1002/adfm.201604468
37 J. Molina-Mendoza A. , Barawi M. , Biele R. , Flores E. , R. Ares J. , Sánchez C. , Rubio-Bollinger G. , Agraït N. , D’Agosta R. , J. Ferrer I. , Castellanos-Gomez A. . Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater., 2015, 1(9): 1500126
https://doi.org/10.1002/aelm.201500126
38 H. Firouzkhani A. , Vaez-Zadeh M. , Jamnezhad H. , Berahman M. . Electronic and optical properties of monolayer TiS3: DFT calculation. J. Optoelectron. Adv. Mater., 2020, 22(11−12): 623
39 Kang J. , W. Wang L. . Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys., 2016, 18(22): 14805
https://doi.org/10.1039/C6CP01125J
40 Chen C. , Chen F. , Chen X. , Deng B. , Eng B. , Jung D. , Guo Q. , Yuan S. , Watanabe K. , Taniguchi T. , L. Lee M. , Xia F. . Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett., 2019, 19(3): 1488
https://doi.org/10.1021/acs.nanolett.8b04041
41 Li Y. , Hu Z. , Lin S. , K. Lai S. , Ji W. , P. Lau S. . Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater., 2017, 27(19): 1600986
https://doi.org/10.1002/adfm.201600986
42 K. Qin J. , L. Sun H. , Su T. , Zhao W. , Zhen L. , Chai Y. , Y. Xu C. . Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses. Appl. Phys. Lett., 2021, 119(20): 201903
https://doi.org/10.1063/5.0069569
[1] fop-21376-OF-zhangkai_suppl_1 Download
[1] Jia-Jing Li, Yang Dai, Jin-Cheng Zheng. Strain engineering of ion migration in LiCoO2[J]. Front. Phys. , 2022, 17(1): 13503-.
[2] Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding[J]. Front. Phys. , 2021, 16(4): 43505-.
[3] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[4] Sanshui Xiao,Xiaolong Zhu,Bo-Hong Li,N. Asger Mortensen. Graphene-plasmon polaritons: From fundamental properties to potential applications[J]. Front. Phys. , 2016, 11(2): 117801-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed