Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 42203    https://doi.org/10.1007/s11467-023-1380-5
Effect of ambient pressures on laser-induced breakdown spectroscopy signals
Kaifan Zhang1, Weiran Song1, Zongyu Hou1,2, Zhe Wang1,2()
1. State Key Laboratory of Power System Operation and Control, Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, International Joint Laboratory on Low Carbon Clean Energy Innovation, Institute for Carbon Neutrality, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
2. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
 Download: PDF(20452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser-induced breakdown spectroscopy (LIBS) is regarded as the future superstar for analytical chemistry and widely applied in various fields. Improving the quality of LIBS signal is fundamental to achieving accurate quantification and large-scale commercialization of LIBS. To propose control methods that improve LIBS signal quality, it is essential to have a comprehensive understanding of the influence of key parameters, such as ambient gas pressure, temperature, and sample temperature on LIBS signals. To date, extensive research has been carried out. However, different researchers often yield significantly different experimental results for LIBS, preventing the formation of consistent conclusions. This greatly prevents the understanding of influencing laws of key parameters and the improvement of LIBS quantitative performance. Taking ambient gas pressure as an example, this paper compares the effects of ambient gas pressure under different optimization conditions, reveals the influence of spatiotemporal window caused by inherent characteristics of LIBS signal sources, i.e., intense temporal changes and spatial non-uniformity of laser-induced plasmas, on the impact patterns of key parameters. From the perspective of plasma spatiotemporal evolution, the paper elucidates the influence patterns of ambient gas pressure on LIBS signals, clarifying seemingly contradictory research results in the literature.

Keywords laser-induced breakdown spectroscopy      spatiotemporal window      pressure condition      signal uncertainty      plasma modulation     
Corresponding Author(s): Zhe Wang   
About author:

Lei Wang and Yingqiu Xie contributed equally to this work.

Issue Date: 30 January 2024
 Cite this article:   
Kaifan Zhang,Weiran Song,Zongyu Hou, et al. Effect of ambient pressures on laser-induced breakdown spectroscopy signals[J]. Front. Phys. , 2024, 19(4): 42203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1380-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/42203
Fig.1  Different results of pressure effects on the LIBS signal intensity from different researchers. (a) The absolute signal intensity of the continuum radiation, W II line (434.81 nm) and W I (429.46 nm) line as a function of air pressure [16]. (b) Variation in peak intensity of spectral line Cu I at 510.5 nm with pressure [18]. (c) Emission intensity of Mg II (279.55 nm) line at different pressures [19]. (d) Spectral intensity of Na I 590.02 nm under different air pressures [13].
Fig.2  Schematic diagram of the LIBS experimental setup. ND filters: neutral density filters.
Fig.3  The relative positions and delay time of spatiotemporal windows I, II, and III and patterns of LIBS signal intensity with pressure variation under spatiotemporal windows I (a), II (b), and III (c). Omitted distances are denoted by // symbols for better visualization. X and Y are the coordinates of the translation stage in the horizontal plane direction.
Fig.4  (a) The iterative process of optimizing the spatiotemporal windows at each pressure. (b) The optimal spatial and temporal windows at different pressures. The black cubes represent the experimental results, while the curve represent the fitted values based on the results.
Fig.5  The plasma evolution images at different pressures.
Fig.6  (a) The variation of signal-to-noise ratio (SNR) of Cu I (521.72 nm) line with delay during the final iteration of spatiotemporal window optimization. (b) The optimal delay time at different pressures. The black squares represent the experimental results, while the curve represent the fitted values based on the results. (c) The variation of average plasma image intensity over time at 100 kPa. (d) The variation of plasma decay time with pressure.
Fig.7  (a) The variation of the optimized window to sample distance with respect to pressure. (b) The variation of the mean plasma height with respect to pressure.
Fig.8  (a) The patterns of spectral signal intensity of Cu I (515.24 nm) and Cu I (521.72 nm) lines with respect to pressure under the optimal spatiotemporal windows at each pressure. (b) Variation of the plasma area with pressure. (c) The variation of the accumulated volume of laser ablation craters with pressure after 50 laser pulses.
Fig.9  The depth and 3D images of ablation craters at 0.1 kPa (a) and 100 kPa (b).
Fig.10  Signal-to-noise (a) and signal-to-background (b) of Cu I (515.24 nm) and Cu I (521.72 nm) lines at different pressures.
Fig.11  The spectral signal intensity RSD with respect to pressure under the optimal spatiotemporal windows at each pressure.
Fig.12  The diagram of plasma and external shock wave evolution [15].
Fig.13  Plasma evolution images over time at 0.1 kPa (a), 5 kPa (b), and 100 kPa (c).
Fig.14  The variation of the plasma core region height with delay time at pressures of 0.1 kPa, 5 kPa, and 100 kPa.
1 Wang Z. , B. Yuan T. , Y. Hou Z. , D. Zhou W. , D. Lu J. , B. Ding H. , Y. Zeng X. . Laser-induced breakdown spectroscopy in China. Front. Phys., 2014, 9(4): 419
https://doi.org/10.1007/s11467-013-0410-0
2 D. Winefordner J. , B. Gornushkin I. , Correll T. , Gibb E. , W. Smith B. , Omenetto N. . Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser-induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom., 2004, 19(9): 1061
https://doi.org/10.1039/b400355c
3 Sheta S. , S. Afgan M. , Hou Z. , C. Yao S. , Zhang L. , Li Z. , Wang Z. . Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom., 2019, 34(6): 1047
https://doi.org/10.1039/C9JA00016J
4 Ji J. , Song W. , Hou Z. , Li L. , Yu X. , Wang Z. . Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2022, 1235: 340551
https://doi.org/10.1016/j.aca.2022.340551
5 A. Cremers D., Laser-Induced Breakdown Spectroscopy: Theory and Applications, Berlin, Heidelberg: Springer, 2014
6 O. Cáceres J.Y. S. de los Terreros J., A real-world approach to identifying animal bones and Lower Pleistocene fossils by laser induced breakdown spectroscopy, Talanta 235, 122780 (2021)
7 Limbeck A. , Brunnbauer L. , Lohninger H. , Pořízka P. , Modlitbová P. , Kaiser J. , Janovszky P. , Kéri A. , Galbács G. . Methodology and applications of elemental mapping by laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2021, 1147: 72
https://doi.org/10.1016/j.aca.2020.12.054
8 Hou Z. , S. Afgan M. , Sheta S. , Liu J. , Wang Z. . Plasma modulation using beam shaping to improve signal quality for laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2020, 35(8): 1671
https://doi.org/10.1039/D0JA00195C
9 Amal K. , H. Elnaby S. , Palleschi V. , Salvetti A. , A. Harith M. . Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Appl. Phys. B, 2006, 83(4): 651
https://doi.org/10.1007/s00340-006-2259-1
10 Gautier C. , Fichet P. , Menut D. , Dubessy J. . Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials. Spectrochim. Acta B At. Spectrosc., 2006, 61(2): 210
https://doi.org/10.1016/j.sab.2006.01.005
11 Wang Z. , Hou Z. , Lui S. , Jiang D. , Liu J. , Li Z. . Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal. Opt. Express, 2012, 20(S6): A1011
https://doi.org/10.1364/OE.20.0A1011
12 Hou Z. , Wang Z. , Liu J. , Ni W. , Li Z. . Signal quality improvement using cylindrical confinement for laser-induced breakdown spectroscopy. Opt. Express, 2013, 21(13): 15974
https://doi.org/10.1364/OE.21.015974
13 Yi R. , Yang X. , Lin F. , Ren S. . Improving the spectral qualities of major elements in soil by controlling the ambient pressure in time-resolved laser-induced breakdown spectroscopy. Appl. Opt., 2019, 58(32): 8824
https://doi.org/10.1364/ao.58.008824
14 Yu J. , Hou Z. , Ma Y. , Li T. , Fu Y. , Wang Y. , Li Z. , Wang Z. . Improvement of laser induced breakdown spectroscopy signal using gas mixture. Spectrochim. Acta B At. Spectrosc., 2020, 174: 105992
https://doi.org/10.1016/j.sab.2020.105992
15 T. Fu Y. , L. Gu W. , Y. Hou Z. , A. Muhammed S. , Q. Li T. , Wang Y. , Wang Z. . Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Front. Phys., 2021, 16(2): 22502
https://doi.org/10.1007/s11467-020-1006-0
16 Wu D. , Sun L. , Liu J. , Lyu Y. , Wu H. , Yuan S. , Hai R. , Li C. , Feng C. , Zhao D. , Ding H. . Parameter optimization of the spectral emission of laser-induced tungsten plasma for tokamak wall diagnosis at different pressures. J. Anal. At. Spectrom., 2021, 36(6): 1159
https://doi.org/10.1039/D1JA00009H
17 Farid N. , Bashir S. , Mahmood K. . Effect of ambient gas conditions on laser-induced copper plasma and surface morphology. Phys. Scr., 2012, 85(1): 015702
https://doi.org/10.1088/0031-8949/85/01/015702
18 Farid N. , S. Harilal S. , Ding H. , Hassanein A. . Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. J. Appl. Phys., 2014, 115(3): 033107
https://doi.org/10.1063/1.4862167
19 Haider Z. , B. Munajat Y. , Kamarulzaman R. , Shahami N. . Comparison of single pulse and double simultaneous pulse laser-induced breakdown spectroscopy. Anal. Lett., 2015, 48(2): 308
https://doi.org/10.1080/00032719.2014.940532
20 Yuan H. , B. Gojani A. , B. Gornushkin I. , Wang X. , Liu D. , Rong M. . Dynamics of laser-induced plasma splitting. Opt. Lasers Eng., 2020, 124: 105832
https://doi.org/10.1016/j.optlaseng.2019.105832
21 Wang Z. , S. Afgan M. , Gu W. , Song Y. , Wang Y. , Hou Z. , Song W. , Li Z. . Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. Trends Analyt. Chem., 2021, 143: 116385
https://doi.org/10.1016/j.trac.2021.116385
22 J. Effenberger A. , R. Scott J. . Effect of atmospheric conditions on LIBS spectra. Sensors, 2010, 10: 4907
https://doi.org/10.3390/s100504907
23 Burger M. , Pantić D. , Nikolić Z. , Djeniže S. . Shielding effects in the laser-generated copper plasma under reduced pressures of He atmosphere. J. Quant. Spectrosc. Radiat. Transf., 2016, 170: 19
https://doi.org/10.1016/j.jqsrt.2015.10.015
24 R. Scott J.J. Effenberger A.J. Hatch J., Influence of Atmospheric Pressure and Composition on LIBS, in: Laser-Induced Breakdown Spectroscopy: Theory and Applications, Berlin, Heidelberg: Springer, 2014
25 S. Cowpe J. , D. Pilkington R. , S. Astin J. , E. Hill A. . The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology. J. Phys. D, 2009, 42(16): 165202
https://doi.org/10.1088/0022-3727/42/16/165202
26 Li T. , Sheta S. , Hou Z. , Dong J. , Wang Z. . Impacts of a collection system on laser-induced breakdown spectroscopy signal detection. Appl. Opt., 2018, 57(21): 6120
https://doi.org/10.1364/AO.57.006120
27 Bashir S. , Farid N. , Mahmood K. , Shahid Rafique M. . Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl. Phys. A, 2012, 107(1): 203
https://doi.org/10.1007/s00339-011-6730-4
28 Noll R., Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin, Heidelberg: Springer, 2012
[1] Zongyu Hou, Weilun Gu, Tianqi Li, Zhe Wang, Liang Li, Xiang Yu, Yecai Zhang, Zijun Liu. A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors[J]. Front. Phys. , 2022, 17(6): 62503-.
[2] Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲). Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Front. Phys. , 2021, 16(2): 22500-.
[3] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[4] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[5] Yong Zhang,Yun-Hai Jia,Chun Yang,Dong-Ling Li,Jia Liu,Yong-Yan Chen,Ying Liu,Yi-Xiang Duan. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(6): 115205-.
[6] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
[7] Zhen-Zhen Wang (王珍珍),Yoshihiro Deguchi (出口祥啓),Zhen-Zhen Zhang (张臻臻),Zhe Wang (王哲),Xiao-Yan Zeng (曾晓雁),Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia[J]. Front. Phys. , 2016, 11(6): 114213-.
[8] Yong Xin (辛勇),Lan-Xiang Sun (孙兰香),Zhi-Jia Yang (杨志家),Peng Zeng (曾鹏),Zhi-Bo Cong (丛智博),Li-Feng Qi (齐立峰). In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system[J]. Front. Phys. , 2016, 11(5): 115207-.
[9] Yang-Min Guo,Lian-Bo Guo,Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data[J]. Front. Phys. , 2016, 11(5): 114212-.
[10] Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209-.
[11] Shi-Lei Zhong (钟石磊),Yuan Lu (卢渊),Wei-Jin Kong (孔伟金),Kai Cheng (程凯),Ronger Zheng (郑荣儿). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(4): 114202-.
[12] Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front. Phys. , 2015, 10(5): 104207-.
[13] Zhe Wang, Ting-Bi Yuan, Zong-Yu Hou, Wei-Dong Zhou, Ji-Dong Lu, Hong-Bin Ding, Xiao-Yan Zeng. Laser-induced breakdown spectroscopy in China[J]. Front. Phys. , 2014, 9(4): 419-438.
[14] Zhi-Bo Ni, Xing-Long Chen, Hong-Bo Fu, Jing-Ge Wang, Feng-Zhong Dong. Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image[J]. Front. Phys. , 2014, 9(4): 439-445.
[15] Qian-Qian Wang, Kai Liu, Hua Zhao, Cong-Hui Ge, Zhi-Wen Huang. Detection of explosives with laser-induced breakdown spectroscopy[J]. Front. Phys. , 2012, 7(6): 701-707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed