Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2013, Vol. 8 Issue (1) : 94-110    https://doi.org/10.1007/s11467-013-0286-z
RESEARCH ARTICLE
Lattice Boltzmann model for combustion and detonation
Bo Yan, Ai-Guo Xu(), Guang-Cai Zhang(), Yang-Jun Ying, Hua Li
National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
 Download: PDF(862 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, Δm*, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.

Keywords lattice Boltzmann method      Lee-Tarver model      viscous detonation      deviation from equilibrium     
Corresponding Author(s): Xu Ai-Guo,Email:Xu_Aiguo@iapcm.ac.cn; Zhang Guang-Cai,Email:Zhang_Guangcai@iapcm.ac.cn   
Issue Date: 01 February 2013
 Cite this article:   
Bo Yan,Ai-Guo Xu,Guang-Cai Zhang, et al. Lattice Boltzmann model for combustion and detonation[J]. Front. Phys. , 2013, 8(1): 94-110.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0286-z
https://academic.hep.com.cn/fop/EN/Y2013/V8/I1/94
1 S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , New York: Oxford University Press, 2001
2 R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. , 1992, 222(3): 145
doi: 10.1016/0370-1573(92)90090-M
3 A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2003, 67(5): 056105
doi: 10.1103/PhysRevE.67.056105
4 A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2006, 74(1): 011505
doi: 10.1103/PhysRevE.74.011505
5 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 331: 10
doi: 10.1016/j.physa.2003.09.040
6 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 334: 750
doi: 10.1016/j.physa.2004.06.057
7 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2006, 362: 42
doi: 10.1016/j.physa.2005.09.015
8 C. Aidun and J. Clausen, Annu. Rev. Fluid Mech. , 2010, 42(1): 439
doi: 10.1146/annurev-fluid-121108-145519
9 S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Phys. Rev. Lett. , 1991, 67(27): 3776
doi: 10.1103/PhysRevLett.67.3776
10 G. Vahala, B. Keating, M. Soe, J. Yepezand, and L. Vahala, Commun. Comput. Phys. , 2008, 4: 624
11 A. J. C. Ladd, J. Fluid Mech. , 1994, 271: 285
doi: 10.1017/S0022112094001771
12 A. J. C. Ladd, J. Fluid Mech. , 1994, 271: 311
doi: 10.1017/S0022112094001783
13 S. Succi, E. Foti, and F. Higuera, Europhys. Lett. , 1989, 10(5): 433
doi: 10.1209/0295-5075/10/5/008
14 Y. Xu, H. Li, S. Guo, and G. Huang, Commun. Theor. Phys. , 2004, 41: 949
15 Y. Xu, Y. Liu, and G. Huang, Chin. Phys. Lett. , 2004, 21: 2454
doi: 10.1088/0256-307X/21/12/037
16 Y. Xu, Y. Liu, X. Yang, and F. Wu, Commun. Theor. Phys. , 2008, 49: 1319
doi: 10.1088/0253-6102/49/5/51
17 M. Watari and M. Tsutahara, Phys. Rev. E , 2003, 67(3): 036306
doi: 10.1103/PhysRevE.67.036306
18 A. Xu, Europhys. Lett. , 2005, 69(2): 214
doi: 10.1209/epl/i2004-10334-y
19 A. Xu, Phys. Rev. E , 2005, 71(6): 066706
doi: 10.1103/PhysRevE.71.066706
20 Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2008, 50(2): 201
doi: 10.1088/0253-6102/50/2/17
21 Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 56(3): 490
doi: 10.1088/0253-6102/56/3/18
22 Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 83(5): 056704
doi: 10.1103/PhysRevE.83.056704
23 Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E , 2007, 76(5): 056705
doi: 10.1103/PhysRevE.76.056705
24 Q. Li, Y. L. He, Y. Wang, and G. H. Tang, Phys. Lett. A , 2009, 373(25): 2101
doi: 10.1016/j.physleta.2009.04.036
25 Y. Wang, Y. L. He, T. Zhao, G. H. Tang, and W. Q. Tao, Int. J. Mod. Phys. C , 2007, 18(12): 1961
doi: 10.1142/S0129183107011868
26 M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. , 1995, 75(5): 830
doi: 10.1103/PhysRevLett.75.830
27 X. He, S. Chen, and R. Zhang, J. Comput. Phys. , 1999, 152(2): 642
doi: 10.1006/jcph.1999.6257
28 M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Phys. Rev. E , 2007, 75(2): 026702
doi: 10.1103/PhysRevE.75.026702
29 V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E , 2004, 70(4): 046702
doi: 10.1103/PhysRevE.70.046702
30 A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Commun. Comput. Phys. , 2010, 7: 350
31 Y. Gan, A. Xu, G. Zhang, and Y. Li, Physica A , 2008, 387(8-9): 1721
32 Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E , 2011, 84(4): 046715
doi: 10.1103/PhysRevE.84.046715
33 Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett. , 2012, 97(4): 44002
doi: 10.1209/0295-5075/97/44002
34 Y. Gan, A. Xu, G. Zhang, and Y. Li, Front. Phys. , 2012, 7(4): 481
doi: 10.1007/s11467-012-0245-0
35 A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Front. Phys. , 2012, 7(5): 582
doi: 10.1007/s11467-012-0269-5
36 X. F. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C , 2007, 18(11): 1747
doi: 10.1142/S0129183107011716
37 F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys. , 2009, 52: 681
doi: 10.1088/0253-6102/52/4/25
38 F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2010, 54(6): 1121
doi: 10.1088/0253-6102/54/6/28
39 F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 55(2): 325
doi: 10.1088/0253-6102/55/2/23
40 A. N. Gorban and D. Packwood, Phys. Rev. E , 2012, 86(2): 025701(R)
doi: 10.1103/PhysRevE.86.025701
41 F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett. , 1989, 9(4): 345
doi: 10.1209/0295-5075/9/4/008
42 P. Lallemand and L. S. Luo, Phys. Rev. E , 2000, 61(6): 6546
doi: 10.1103/PhysRevE.61.6546
43 P. Lallemand and L. S. Luo, Phys. Rev. E , 2003, 68(3): 036706
doi: 10.1103/PhysRevE.68.036706
44 F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A , 2011, 375(21): 2129
doi: 10.1016/j.physleta.2011.04.013
45 F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett. , 2010, 90(5): 54003
doi: 10.1209/0295-5075/90/54003
46 F. Tosi, S. Ubertini, S. Succi, H. Chen, and I. V. Karlin, Math. Comput. Simul. , 2006, 72(2-6): 227
47 S. Ansumali and I. V. Karlin, J. Stat. Phys. , 2002, 107(1/2): 291
doi: 10.1023/A:1014575024265
48 S. S. Chikatamarla and I. V. Karlin, Phys. Rev. Lett. , 2006, 97(19): 190601
doi: 10.1103/PhysRevLett.97.190601
49 S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E , 2009, 79(4): 046701
doi: 10.1103/PhysRevE.79.046701
50 Y. Li, R. Shock, R. Zhang, and H. Chen, J. Fluid Mech. , 2004, 519: 273
doi: 10.1017/S0022112004001272
52 F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys. , 2011, 56(2): 333
doi: 10.1088/0253-6102/56/2/25
53 W. Fickett and W. C. Davis, Detonation,Theory and Experiment , New York: Dover Publications, Inc . Mineola, 1979
54 M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci. , 1881, 93: 18
55 M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci. , 1882, 94: 149
56 E. Mallard, H. Le Chatelier, and C. R. Hebd, Sceances Acad. Sci. , 1881, 93: 145
57 D. L. Chapmann, Philos. Mag. , 1899, 47: 90
58 E. Jouguet, J. Math. Pures Appl., 1905, 1: 347
59 Ya. B. Zeldovich and S. A. Kompaneets, Zh. Eksp. Teor. Fiz. , 1940, 10: 542
60 J. Von Neumann, Theory of Detonation Waves , New York: Macmillan, 1942
61 W. Doering, Ann. Phys. , 1943, 43: 421
doi: 10.1002/andp.19434350605
62 C. L. Mader, Numerical Modeling of Explosives and Propellants , New York: CRC Press, 2008
63 C. Wang, X. Zhang, C. W. Shu, and J. Ning, J. Comput. Phys. , 2012, 231(2): 653
doi: 10.1016/j.jcp.2011.10.002
64 S. Tan, C. Wang, C. W. Shu, and J. Ning, J. Comput. Phys. , 2012, 231(6): 2510
doi: 10.1016/j.jcp.2011.11.037
65 S. Karni, J. Comput. Phys. , 1994, 112(1): 31
doi: 10.1006/jcph.1994.1080
66 A. Marquina and P. Mulet, J. Comput. Phys. , 2003, 185(1): 120
doi: 10.1016/S0021-9991(02)00050-5
67 J. J. Quirk and S. Karni, J. Fluid Mech. , 1996, 318: 129
doi: 10.1017/S0022112096007069
68 K. M. Shyue, J. Comput. Phys. , 1998, 142(1): 208
doi: 10.1006/jcph.1998.5930
69 R. Loubre, P. H. Maire, M. Shashkov, J. Breil, and S. Galera, J. Comput. Phys. , 2010, 229: 4724
doi: 10.1016/j.jcp.2010.03.011
70 S. Galera, P. H. Maire, and J. Breil, J. Comput. Phys. , 2010, 229(16): 5755
doi: 10.1016/j.jcp.2010.04.019
71 S. Ssher and R. P. Fedkiw, J. Comput. Phys. , 2001, 169: 463
doi: 10.1006/jcph.2000.6636
72 M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys. , 1994, 114(1): 146
doi: 10.1006/jcph.1994.1155
73 R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech. , 1999, 31(1): 567
doi: 10.1146/annurev.fluid.31.1.567
74 G. Tryggvason, B. Bunner, A. Esmaeeli, and D. Juric, J. Comput. Phys. , 2001, 169: 708
doi: 10.1006/jcph.2001.6726
75 J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, SIAM J. Sci. Comput. , 2000, 21(6): 2240
doi: 10.1137/S1064827598340500
76 D. K. Mao, J. Comput. Phys., 2007, 226(2): 1550
doi: 10.1016/j.jcp.2007.06.004
77 J. Sun and J. Zhu, Theory of Detonation Physics , Beijing: National Defense Industry Press, 1995(in Chinese)
78 S. Succi, G. Bella, and F. Papetti, J. Sci. Comput. , 1997, 12(4): 395
doi: 10.1023/A:1025676913034
79 O. Filippova and D. Hanel, J. Comput. Phys. , 2000, 158(2): 139
doi: 10.1006/jcph.1999.6405
80 O. Filippova and D. Hanel, Comput. Phys. Commun. , 2000, 129(1-3): 267
81 K. Yamamoto, X. He, and G. D. Doolen, J. Stat. Phys. , 2002, 107(1/2): 367
doi: 10.1023/A:1014583226083
82 T. Lee, C. L. Lin, and L. D. Chen, J. Comput. Phys. , 2006, 215(1): 133
doi: 10.1016/j.jcp.2005.10.021
83 E. L. Lee and C. M. Tarver, Phys. Fluids , 1980, 23(12): 2362
doi: 10.1063/1.862940
84 R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves , New York: Interscienc Publishers Inc., 1948
85 W. W. Wood, Phys. Fluids , 1963, 6(8): 1081
doi: 10.1063/1.1706865
[1] Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows[J]. Front. Phys. , 2014, 9(2): 246-254.
[2] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Front. Phys. , 2012, 7(4): 481-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed