Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33203    https://doi.org/10.1007/s11467-023-1351-x
RESEARCH ARTICLE
Engineering phonon thermal transport in few-layer PdSe2
Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao()
Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
 Download: PDF(3337 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Engineering phonon transport in low-dimensional materials has great significance not only for fundamental research, but also for thermal management applications of electric devices. However, due to the difficulties of micro and nano processing and characterization techniques, the work on tuning phonon transport at nanoscale are scarce. In this work, by introducing Ar+ plasma, we probed the phonon transport in two-dimensional (2D) layered semiconductor PdSe2 under different defect concentrations. By using thermal bridge method, the thermal conductivity was measured to decrease by 50% after a certain Ar+ irradiation, which implied a possible phase transition. Moreover, Raman characterizations were performed to show that the Raman sensitive peaks of PdSe2 was red-shifted and finally became disappeared with the increase of defect concentration. “Defect engineering” proves be a practical strategy in tuning the phonon thermal transport in low-dimensional materials, thus providing guidance for potential application in designing thermoelectric devices with various emerging materials.

Keywords phonon transport      PdSe2      defects      thermal bridge method     
Corresponding Author(s): Yunshan Zhao   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 25 October 2023   Issue Date: 10 November 2023
 Cite this article:   
Meilin Li,Huanhuan Sun,Jun Zhou, et al. Engineering phonon thermal transport in few-layer PdSe2[J]. Front. Phys. , 2024, 19(3): 33203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1351-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33203
Fig.1  (a) Optical image and (b) AFM image of PdSe2. The thickness of the sample is 9.6 nm. (c) Optical image of transferred METS sample. Scale bars have been shown in each figure.
Fig.2  (a) Measured temperature-dependent resistance of heater and sensor and the calculated TCR. (b) Intrinsic thermal conductivity of PdSe2. The extracted thermal conductivity ranges from (9.4±1.1) W·m?1·K?1 at room temperature.
Fig.3  The thermal conductance of PdSe2 versus the Ar+ irradiation time at 300 K and 310 K. The thermal conductance of PdSe2 decreases with an increase in the defect concentration.
Fig.4  The evolution of Raman sensitive peaks, Ag1 and Ag3, for few layer PdSe2 flakes under various irradiation doses.
1 Pei Y. , Shi X. , LaLonde A. , Wang H. , Chen L. , J. Snyder G. . Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66
https://doi.org/10.1038/nature09996
2 S. Dresselhaus M. , Chen G. , Y. Tang M. , G. Yang R. , Lee H. , Z. Wang D. , F. Ren Z. , P. Fleurial J. , Gogna P. . New directions for low-dimensional thermoelectric materials. Adv. Mater., 2007, 19(8): 1043
https://doi.org/10.1002/adma.200600527
3 Kim R. , Datta S. , S. Lundstrom M. . Influence of dimensionality on thermoelectric device performance. J. Appl. Phys., 2009, 105(3): 034506
https://doi.org/10.1063/1.3074347
4 Hippalgaonkar K. , Wang Y. , Ye Y. , Y. Qiu D. , Zhu H. , Wang Y. , Moore J. , G. Louie S. , Zhang X. . High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B, 2017, 95(11): 115407
https://doi.org/10.1103/PhysRevB.95.115407
5 D. Hicks L. , S. Dresselhaus M. . Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1993, 47(19): 12727
https://doi.org/10.1103/PhysRevB.47.12727
6 M. Zuev Y. , Chang W. , Kim P. . Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett., 2009, 102(9): 096807
https://doi.org/10.1103/PhysRevLett.102.096807
7 Yu Z.Xiong G.Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
8 Zhao Y. , Yu P. , Zhang G. , Sun M. , Chi D. , Hippalgaonkar K. , T. L. Thong J. , Wu J. . Low-symmetry PdSe2 for high performance thermoelectric applications. Adv. Funct. Mater., 2020, 30(52): 2004896
https://doi.org/10.1002/adfm.202004896
9 Zhao Y. , Zheng M. , Wu J. , Guan X. , Suwardi A. , Li Y. , Lal M. , Xie G. , Zhang G. , Zhang L. , T. L. Thong J. . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
https://doi.org/10.1039/D1NR01832A
10 Di Bartolomeo A. , Urban F. , Pelella A. , Grillo A. , Passacantando M. , Liu X. , Giubileo F. . Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology, 2020, 31(37): 375204
https://doi.org/10.1088/1361-6528/ab9472
11 Di Bartolomeo A. , Pelella A. , Liu X. , Miao F. , Passacantando M. , Giubileo F. , Grillo A. , Iemmo L. , Urban F. , Liang S. . Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater., 2019, 29(29): 1902483
https://doi.org/10.1002/adfm.201902483
12 D. Nguyen G.Liang L.Zou Q.Fu M.D. Oyedele A.G. Sumpter B.Liu Z.Gai Z.Xiao K.P. Li A., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
13 D. Oyedele A. , Yang S. , Feng T. , V. Haglund A. , Gu Y. , A. Puretzky A. , Briggs D. , M. Rouleau C. , F. Chisholm M. , R. Unocic R. , Mandrus D. , M. III Meyer H. , T. Pantelides S. , B. Geohegan D. , Xiao K. . Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc., 2019, 141(22): 8928
https://doi.org/10.1021/jacs.9b02593
14 Lin J. , Zuluaga S. , Yu P. , Liu Z. , T. Pantelides S. , Suenaga K. . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
15 A. ElGhazali M. , G. Naumov P. , Mirhosseini H. , Süß V. , Müchler L. , Schnelle W. , Felser C. , A. Medvedev S. . Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B, 2017, 96(6): 060509
https://doi.org/10.1103/PhysRevB.96.060509
16 Chen L. , Zhang W. , Zhang H. , Chen J. , Tan C. , Yin S. , Li G. , Zhang Y. , Gong P. , Li L. . In-plane anisotropic thermal conductivity of low-symmetry PdSe2. Sustainability (Basel), 2021, 13(8): 4155
https://doi.org/10.3390/su13084155
17 C. Zhang K. , Y. Cheng L. , Shen C. , F. Li Y. , Liu Y. , Zhu Y. . Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe2. Phys. Chem. Chem. Phys., 2021, 23(34): 18869
https://doi.org/10.1039/D1CP00992C
18 Jena T. , T. Hossain M. , K. Giri P. . Temperature-dependent Raman study and determination of anisotropy ratio and in-plane thermal conductivity of low-temperature CVD-grown PdSe2 using unpolarized laser excitation. J. Mater. Chem. C, 2021, 9(46): 16693
https://doi.org/10.1039/D1TC03248H
19 Qin D. , Yan P. , Ding G. , Ge X. , Song H. , Gao G. . Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep., 2018, 8(1): 2764
https://doi.org/10.1038/s41598-018-20918-9
20 Wang Y. , Ren J. . Strain-driven switchable thermal conductivity in ferroelastic PdSe2. ACS Appl. Mater. Interfaces, 2021, 13(29): 34724
https://doi.org/10.1021/acsami.1c07830
21 N. Hoffman A. , Gu Y. , Liang L. , D. Fowlkes J. , Xiao K. , D. Rack P. . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. 2D Mater. Appl., 2019, 3: 50
https://doi.org/10.1038/s41699-019-0132-4
22 Chen J. , He J. , Pan D. , Wang X. , Yang N. , Zhu J. , A. Yang S. , Zhang G. . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
https://doi.org/10.1007/s11433-022-1952-3
23 Zhang Z. , Chen J. , Li B. . Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale, 2017, 9(37): 14208
https://doi.org/10.1039/C7NR04944G
24 Cai Y. , Faizan M. , Mu H. , Zhang Y. , Zou H. , J. Zhao H. , Fu Y. , Zhang L. . Anisotropic phonon thermal transport in two-dimensional layered materials. Front. Phys., 2023, 18(4): 43303
https://doi.org/10.1007/s11467-023-1276-4
25 Yu C. , Hu Y. , He J. , Lu S. , Li D. , Chen J. . Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett., 2022, 120(13): 132201
https://doi.org/10.1063/5.0086608
26 Bera K. , Roy A. , Chugh D. , Wong-Leung J. , Hoe Tan H. , Jagadish C. . Role of defects and grain boundaries in the thermal response of wafer-scale hBN films. Nanotechnology, 2021, 32(7): 075702
https://doi.org/10.1088/1361-6528/abc286
27 Wu X. , Han Q. . Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous. Comput. Mater. Sci., 2020, 184: 109938
https://doi.org/10.1016/j.commatsci.2020.109938
28 Cai Q. , Scullion D. , Falin A. , Watanabe K. , Taniguchi T. , Chen Y. , J. G. Santos E. , H. Li L. . Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9(9): 3059
https://doi.org/10.1039/C6NR09312D
29 Aiyiti A. , Hu S. , Wang C. , Xi Q. , Cheng Z. , Xia M. , Ma Y. , Wu J. , Guo J. , Wang Q. , Zhou J. , Chen J. , Xu X. , Li B. . Thermal conductivity of suspended few-layer MoS2. Nanoscale, 2018, 10(6): 2727
https://doi.org/10.1039/C7NR07522G
30 Zhao Y. , Zheng M. , Wu J. , Guan X. , Suwardi A. , Li Y. , Lal M. , Xie G. , Zhang G. , Zhang L. , T. L. Thong J. . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
https://doi.org/10.1039/D1NR01832A
31 R. Naren H. , Thamizhavel A. , Auluck S. , Prasad R. , Ramakrishnan S. . Normal state and superconducting properties of Rh17S15 and Pd17Se15. Supercond. Sci. Technol., 2011, 24(10): 105015
https://doi.org/10.1088/0953-2048/24/10/105015
32 L. Chow W. , Yu P. , Liu F. , Hong J. , Wang X. , Zeng Q. , H. Hsu C. , Zhu C. , Zhou J. , Wang X. , Xia J. , Yan J. , Chen Y. , Wu D. , Yu T. , Shen Z. , Lin H. , Jin C. , K. Tay B. , Liu Z. . High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater., 2017, 29(21): 1602969
https://doi.org/10.1002/adma.201602969
33 C. Meyer J. , Chuvilin A. , Algara-Siller G. , Biskupek J. , Kaiser U. . Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett., 2009, 9(7): 2683
https://doi.org/10.1021/nl9011497
34 Pacilé D. , C. Meyer J. , Ö. Girit Ç. , Zettl A. . The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett., 2008, 92(13): 133107
https://doi.org/10.1063/1.2903702
35 D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
36 W. Roh J. , Ham J. , Kim J. , Moon H. , S. Kim H. , Lee W. . Extreme reduction of thermal conductivity by embedding Al2O3 nanoparticles into single-crystalline Bi nanowires. Acta Mater., 2017, 136: 315
https://doi.org/10.1016/j.actamat.2017.07.020
37 Wang C. , Guo J. , Dong L. , Aiyiti A. , Xu X. , Li B. . Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep., 2016, 6(1): 25334
https://doi.org/10.1038/srep25334
38 Zhao Y. , Zheng M. , Wu J. , Huang B. , T. L. Thong J. . Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method. Nanotechnology, 2020, 31(22): 225702
https://doi.org/10.1088/1361-6528/ab7647
39 Kim P. , Shi L. , Majumdar A. , L. McEuen P. . Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21): 215502
https://doi.org/10.1103/PhysRevLett.87.215502
40 Lee S. , Yang F. , Suh J. , Yang S. , Lee Y. , Li G. , Sung Choe H. , Suslu A. , Chen Y. , Ko C. , Park J. , Liu K. , Li J. , Hippalgaonkar K. , J. Urban J. , Tongay S. , Wu J. . Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun., 2015, 6(1): 8573
https://doi.org/10.1038/ncomms9573
41 Jo I. , T. Pettes M. , Ou E. , Wu W. , Shi L. . Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett., 2014, 104(20): 201902
https://doi.org/10.1063/1.4876965
42 Dong L. , Xi Q. , Chen D. , Guo J. , Nakayama T. , Li Y. , Liang Z. , Zhou J. , Xu X. , Li B. . Dimensional crossover of heat conduction in amorphous polyimide nanofibers. Natl. Sci. Rev., 2018, 5(4): 500
https://doi.org/10.1093/nsr/nwy004
43 T. Pettes M. , Jo I. , Yao Z. , Shi L. . Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett., 2011, 11(3): 1195
https://doi.org/10.1021/nl104156y
44 Lim J. , Hippalgaonkar K. , C. Andrews S. , Majumdar A. , Yang P. . Quantifying surface Roughness effects on phonon transport in silicon nanowires. Nano Lett., 2012, 12(5): 2475
https://doi.org/10.1021/nl3005868
45 Yang L. , Tao Y. , Zhu Y. , Akter M. , Wang K. , Pan Z. , Zhao Y. , Zhang Q. , Q. Xu Y. , Chen R. , T. Xu T. , Chen Y. , Mao Z. , Li D. . Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol., 2021, 16(7): 764
https://doi.org/10.1038/s41565-021-00884-6
46 Luo W.D. Oyedele A.Mao N.Puretzky A.Xiao K.Liang L.Ling X., Excitation-dependent anisotropic Raman response of atomically thin pentagonal PdSe2, ACS Phys. Chem Au 2(6), 482 (2022)
[1] Changqing Xiang, Cheng-Wei Wu, Wu-Xing Zhou, Guofeng Xie, Gang Zhang. Thermal transport in lithium-ion battery: A micro perspective for thermal management[J]. Front. Phys. , 2022, 17(1): 13202-.
[2] Chao Zhang, Fuming Xu, Jian Wang. Full counting statistics of phonon transport in disordered systems[J]. Front. Phys. , 2021, 16(3): 33502-.
[3] Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification[J]. Front. Phys. , 2017, 12(5): 128103-.
[4] Hai-yan HE (何海燕), Bi-cai PAN (潘必才). Studies on structural defects in carbon nanotubes[J]. Front. Phys. , 2009, 4(3): 297-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed