|
|
Engineering phonon thermal transport in few-layer PdSe2 |
Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao( ) |
Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract Engineering phonon transport in low-dimensional materials has great significance not only for fundamental research, but also for thermal management applications of electric devices. However, due to the difficulties of micro and nano processing and characterization techniques, the work on tuning phonon transport at nanoscale are scarce. In this work, by introducing Ar+ plasma, we probed the phonon transport in two-dimensional (2D) layered semiconductor PdSe2 under different defect concentrations. By using thermal bridge method, the thermal conductivity was measured to decrease by 50% after a certain Ar+ irradiation, which implied a possible phase transition. Moreover, Raman characterizations were performed to show that the Raman sensitive peaks of PdSe2 was red-shifted and finally became disappeared with the increase of defect concentration. “Defect engineering” proves be a practical strategy in tuning the phonon thermal transport in low-dimensional materials, thus providing guidance for potential application in designing thermoelectric devices with various emerging materials.
|
Keywords
phonon transport
PdSe2
defects
thermal bridge method
|
Corresponding Author(s):
Yunshan Zhao
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Just Accepted Date: 25 October 2023
Issue Date: 10 November 2023
|
|
1 |
Pei Y. , Shi X. , LaLonde A. , Wang H. , Chen L. , J. Snyder G. . Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66
https://doi.org/10.1038/nature09996
|
2 |
S. Dresselhaus M. , Chen G. , Y. Tang M. , G. Yang R. , Lee H. , Z. Wang D. , F. Ren Z. , P. Fleurial J. , Gogna P. . New directions for low-dimensional thermoelectric materials. Adv. Mater., 2007, 19(8): 1043
https://doi.org/10.1002/adma.200600527
|
3 |
Kim R. , Datta S. , S. Lundstrom M. . Influence of dimensionality on thermoelectric device performance. J. Appl. Phys., 2009, 105(3): 034506
https://doi.org/10.1063/1.3074347
|
4 |
Hippalgaonkar K. , Wang Y. , Ye Y. , Y. Qiu D. , Zhu H. , Wang Y. , Moore J. , G. Louie S. , Zhang X. . High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B, 2017, 95(11): 115407
https://doi.org/10.1103/PhysRevB.95.115407
|
5 |
D. Hicks L. , S. Dresselhaus M. . Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1993, 47(19): 12727
https://doi.org/10.1103/PhysRevB.47.12727
|
6 |
M. Zuev Y. , Chang W. , Kim P. . Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett., 2009, 102(9): 096807
https://doi.org/10.1103/PhysRevLett.102.096807
|
7 |
Yu Z.Xiong G.Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
|
8 |
Zhao Y. , Yu P. , Zhang G. , Sun M. , Chi D. , Hippalgaonkar K. , T. L. Thong J. , Wu J. . Low-symmetry PdSe2 for high performance thermoelectric applications. Adv. Funct. Mater., 2020, 30(52): 2004896
https://doi.org/10.1002/adfm.202004896
|
9 |
Zhao Y. , Zheng M. , Wu J. , Guan X. , Suwardi A. , Li Y. , Lal M. , Xie G. , Zhang G. , Zhang L. , T. L. Thong J. . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
https://doi.org/10.1039/D1NR01832A
|
10 |
Di Bartolomeo A. , Urban F. , Pelella A. , Grillo A. , Passacantando M. , Liu X. , Giubileo F. . Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology, 2020, 31(37): 375204
https://doi.org/10.1088/1361-6528/ab9472
|
11 |
Di Bartolomeo A. , Pelella A. , Liu X. , Miao F. , Passacantando M. , Giubileo F. , Grillo A. , Iemmo L. , Urban F. , Liang S. . Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater., 2019, 29(29): 1902483
https://doi.org/10.1002/adfm.201902483
|
12 |
D. Nguyen G.Liang L.Zou Q.Fu M.D. Oyedele A.G. Sumpter B.Liu Z.Gai Z.Xiao K.P. Li A., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
|
13 |
D. Oyedele A. , Yang S. , Feng T. , V. Haglund A. , Gu Y. , A. Puretzky A. , Briggs D. , M. Rouleau C. , F. Chisholm M. , R. Unocic R. , Mandrus D. , M. III Meyer H. , T. Pantelides S. , B. Geohegan D. , Xiao K. . Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc., 2019, 141(22): 8928
https://doi.org/10.1021/jacs.9b02593
|
14 |
Lin J. , Zuluaga S. , Yu P. , Liu Z. , T. Pantelides S. , Suenaga K. . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
|
15 |
A. ElGhazali M. , G. Naumov P. , Mirhosseini H. , Süß V. , Müchler L. , Schnelle W. , Felser C. , A. Medvedev S. . Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B, 2017, 96(6): 060509
https://doi.org/10.1103/PhysRevB.96.060509
|
16 |
Chen L. , Zhang W. , Zhang H. , Chen J. , Tan C. , Yin S. , Li G. , Zhang Y. , Gong P. , Li L. . In-plane anisotropic thermal conductivity of low-symmetry PdSe2. Sustainability (Basel), 2021, 13(8): 4155
https://doi.org/10.3390/su13084155
|
17 |
C. Zhang K. , Y. Cheng L. , Shen C. , F. Li Y. , Liu Y. , Zhu Y. . Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe2. Phys. Chem. Chem. Phys., 2021, 23(34): 18869
https://doi.org/10.1039/D1CP00992C
|
18 |
Jena T. , T. Hossain M. , K. Giri P. . Temperature-dependent Raman study and determination of anisotropy ratio and in-plane thermal conductivity of low-temperature CVD-grown PdSe2 using unpolarized laser excitation. J. Mater. Chem. C, 2021, 9(46): 16693
https://doi.org/10.1039/D1TC03248H
|
19 |
Qin D. , Yan P. , Ding G. , Ge X. , Song H. , Gao G. . Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep., 2018, 8(1): 2764
https://doi.org/10.1038/s41598-018-20918-9
|
20 |
Wang Y. , Ren J. . Strain-driven switchable thermal conductivity in ferroelastic PdSe2. ACS Appl. Mater. Interfaces, 2021, 13(29): 34724
https://doi.org/10.1021/acsami.1c07830
|
21 |
N. Hoffman A. , Gu Y. , Liang L. , D. Fowlkes J. , Xiao K. , D. Rack P. . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. 2D Mater. Appl., 2019, 3: 50
https://doi.org/10.1038/s41699-019-0132-4
|
22 |
Chen J. , He J. , Pan D. , Wang X. , Yang N. , Zhu J. , A. Yang S. , Zhang G. . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
https://doi.org/10.1007/s11433-022-1952-3
|
23 |
Zhang Z. , Chen J. , Li B. . Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale, 2017, 9(37): 14208
https://doi.org/10.1039/C7NR04944G
|
24 |
Cai Y. , Faizan M. , Mu H. , Zhang Y. , Zou H. , J. Zhao H. , Fu Y. , Zhang L. . Anisotropic phonon thermal transport in two-dimensional layered materials. Front. Phys., 2023, 18(4): 43303
https://doi.org/10.1007/s11467-023-1276-4
|
25 |
Yu C. , Hu Y. , He J. , Lu S. , Li D. , Chen J. . Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett., 2022, 120(13): 132201
https://doi.org/10.1063/5.0086608
|
26 |
Bera K. , Roy A. , Chugh D. , Wong-Leung J. , Hoe Tan H. , Jagadish C. . Role of defects and grain boundaries in the thermal response of wafer-scale hBN films. Nanotechnology, 2021, 32(7): 075702
https://doi.org/10.1088/1361-6528/abc286
|
27 |
Wu X. , Han Q. . Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous. Comput. Mater. Sci., 2020, 184: 109938
https://doi.org/10.1016/j.commatsci.2020.109938
|
28 |
Cai Q. , Scullion D. , Falin A. , Watanabe K. , Taniguchi T. , Chen Y. , J. G. Santos E. , H. Li L. . Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9(9): 3059
https://doi.org/10.1039/C6NR09312D
|
29 |
Aiyiti A. , Hu S. , Wang C. , Xi Q. , Cheng Z. , Xia M. , Ma Y. , Wu J. , Guo J. , Wang Q. , Zhou J. , Chen J. , Xu X. , Li B. . Thermal conductivity of suspended few-layer MoS2. Nanoscale, 2018, 10(6): 2727
https://doi.org/10.1039/C7NR07522G
|
30 |
Zhao Y. , Zheng M. , Wu J. , Guan X. , Suwardi A. , Li Y. , Lal M. , Xie G. , Zhang G. , Zhang L. , T. L. Thong J. . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
https://doi.org/10.1039/D1NR01832A
|
31 |
R. Naren H. , Thamizhavel A. , Auluck S. , Prasad R. , Ramakrishnan S. . Normal state and superconducting properties of Rh17S15 and Pd17Se15. Supercond. Sci. Technol., 2011, 24(10): 105015
https://doi.org/10.1088/0953-2048/24/10/105015
|
32 |
L. Chow W. , Yu P. , Liu F. , Hong J. , Wang X. , Zeng Q. , H. Hsu C. , Zhu C. , Zhou J. , Wang X. , Xia J. , Yan J. , Chen Y. , Wu D. , Yu T. , Shen Z. , Lin H. , Jin C. , K. Tay B. , Liu Z. . High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater., 2017, 29(21): 1602969
https://doi.org/10.1002/adma.201602969
|
33 |
C. Meyer J. , Chuvilin A. , Algara-Siller G. , Biskupek J. , Kaiser U. . Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett., 2009, 9(7): 2683
https://doi.org/10.1021/nl9011497
|
34 |
Pacilé D. , C. Meyer J. , Ö. Girit Ç. , Zettl A. . The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett., 2008, 92(13): 133107
https://doi.org/10.1063/1.2903702
|
35 |
D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
|
36 |
W. Roh J. , Ham J. , Kim J. , Moon H. , S. Kim H. , Lee W. . Extreme reduction of thermal conductivity by embedding Al2O3 nanoparticles into single-crystalline Bi nanowires. Acta Mater., 2017, 136: 315
https://doi.org/10.1016/j.actamat.2017.07.020
|
37 |
Wang C. , Guo J. , Dong L. , Aiyiti A. , Xu X. , Li B. . Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep., 2016, 6(1): 25334
https://doi.org/10.1038/srep25334
|
38 |
Zhao Y. , Zheng M. , Wu J. , Huang B. , T. L. Thong J. . Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method. Nanotechnology, 2020, 31(22): 225702
https://doi.org/10.1088/1361-6528/ab7647
|
39 |
Kim P. , Shi L. , Majumdar A. , L. McEuen P. . Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21): 215502
https://doi.org/10.1103/PhysRevLett.87.215502
|
40 |
Lee S. , Yang F. , Suh J. , Yang S. , Lee Y. , Li G. , Sung Choe H. , Suslu A. , Chen Y. , Ko C. , Park J. , Liu K. , Li J. , Hippalgaonkar K. , J. Urban J. , Tongay S. , Wu J. . Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun., 2015, 6(1): 8573
https://doi.org/10.1038/ncomms9573
|
41 |
Jo I. , T. Pettes M. , Ou E. , Wu W. , Shi L. . Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett., 2014, 104(20): 201902
https://doi.org/10.1063/1.4876965
|
42 |
Dong L. , Xi Q. , Chen D. , Guo J. , Nakayama T. , Li Y. , Liang Z. , Zhou J. , Xu X. , Li B. . Dimensional crossover of heat conduction in amorphous polyimide nanofibers. Natl. Sci. Rev., 2018, 5(4): 500
https://doi.org/10.1093/nsr/nwy004
|
43 |
T. Pettes M. , Jo I. , Yao Z. , Shi L. . Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett., 2011, 11(3): 1195
https://doi.org/10.1021/nl104156y
|
44 |
Lim J. , Hippalgaonkar K. , C. Andrews S. , Majumdar A. , Yang P. . Quantifying surface Roughness effects on phonon transport in silicon nanowires. Nano Lett., 2012, 12(5): 2475
https://doi.org/10.1021/nl3005868
|
45 |
Yang L. , Tao Y. , Zhu Y. , Akter M. , Wang K. , Pan Z. , Zhao Y. , Zhang Q. , Q. Xu Y. , Chen R. , T. Xu T. , Chen Y. , Mao Z. , Li D. . Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol., 2021, 16(7): 764
https://doi.org/10.1038/s41565-021-00884-6
|
46 |
Luo W.D. Oyedele A.Mao N.Puretzky A.Xiao K.Liang L.Ling X., Excitation-dependent anisotropic Raman response of atomically thin pentagonal PdSe2, ACS Phys. Chem Au 2(6), 482 (2022)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|