Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2010, Vol. 4 Issue (1) : 1-39    https://doi.org/10.1007/s11709-010-0013-6
Research articles
Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics
Eduardo E. ALONSO1,Rafaela CARDOSO2,
1.Universidad Politécnica de Catalu?a, Barcelona, Spain; 2.Instituto Superior Técnico, Lisbon, Portugal;
 Download: PDF(1556 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The basis of the design of earth and rockfill dams is focused on ensuring the stability of the structure under a set of conditions expected to occur during its life. Combined mechanical and hydraulic conditions must be considered since pore pressures develop during construction, after impoundment and in drawdown. Other instability phenomena caused by transient flow and internal erosion must be considered. The prediction of the hydro-mechanical behavior of traditional and non-traditional materials used in the construction of dams is therefore fundamental. The materials used for dam’s construction cover a wide range from clayey materials to rockfill. In a broad sense they are compacted materials and therefore unsaturated materials. A summary of the current level of knowledge on the behavior of traditional materials used in the construction of dams is presented in the paper. Regular compacted materials (with a significant clay fraction), rockfill and compacted soft rocks are studied with more detail. The latter are non-traditional materials. They are analysed because their use, as well as the use of mixtures of soil and rock, is becoming more necessary for sustainability reasons.
Keywords dams      unsaturated soil mechanics      suction      rockfill      clayey soil      mixture      
Issue Date: 05 March 2010
 Cite this article:   
Eduardo E. ALONSO,Rafaela CARDOSO. Behavior of materials for earth and rockfill dams: Perspective from unsaturated soil mechanics[J]. Front. Struct. Civ. Eng., 2010, 4(1): 1-39.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-010-0013-6
https://academic.hep.com.cn/fsce/EN/Y2010/V4/I1/1
Olivella S, Gens A, Carrera J, Alonso E E. Numerical formulation for simulator (CODE_BRIGHT) for coupled analysisof saline media. Engineering Computations, 1996, 13(7): 87–112
UPC-DLT (2002). CODE_BRIGHT- User’s Guide. Departamento deIngenieríadel Terreno, E.T.S. Ingenieros de Caminos,Canales y Puertosde Barcelona, Universidad Politécnica de Cataluña,Spain
Alonso E E, Pinyol N M. Unsaturated soil mechanicsin earth and rockfill dam engineering. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, UnitedKindom. London: Taylor and Francis, 2008, 3–32
Alonso E E, Rojas E, Pinyol N M. Unsaturated soil mechanics. In: Proceedings of XXIV Reunión Nacional de Mecánica deSuelos, Mexico. 2008
Maranha das Neves E, Cardoso R. Structural Behavior of embakmentsbuilt with unsaturated materials – Application to the embankmentsfrom A10 Motorway, Arruda dos Vinhos / Carregado. Study for BRISA. Department of Civil Engineering, Institute forStructures and Construction, Report ICIST EP 13/08. Instituto SuperiorTécnico, 2008
Ng C W W, Pang Y W. Influence of stress stateon soilwater characteristic and slope stability. Journal of Geotechnical And Geoenvironmental Engineering, ASCE, 2000, 126(2): 157–166
Hoffman C, Tarantino A. Effect of grain size distributionon water retention Behavior of well graded coarse material In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, UnitedKindom. London: Taylor and Francis, 2008, 291–288
Bardanis M E, Kavvadas M J. Modifying the Barcelona BasicModel to account for the residual void ratio and subsequent decreaseof shear strength relative to suction. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference,E-UNSAT 2008, Durham, United Kindom. London: Taylor and Francis, 2008, 589–595
Zhou J. Astudy of applied pressure on the Soil Water Characteristic Curve. In: Toll D G, Augarde C E, Gallipoli D, Wheeler S J, eds. Proceedings of the 1st Europe Conference, E-UNSAT 2008, Durham, UnitedKindom. London: Taylor and Francis, 2008, 689–693
Delage P. Experimentalunsaturated soils mechanics. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedings of the 3rd International Conference on Unsaturated Soils,Recife, Brazil. Rotterdam: Balkema, 2002, 3: 973–998
Romero E, Vaunat J. Retention curves of deformableclays. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils,Trento, Italy. Rotterdam: Balkema, 2000, 91–106
Rampino C, Mancuso C, Vinale F. Laboratory testing on an unsaturated soil: equipment,procedures and first experimental results. Canadian Geotechnical Journal, 1999, 36(1): 1–12
Vanapalli S K, Fredlund D G, Pufahl D E. The influence of soil structure and stress history onthe soil-water characteristics of a compacted till. Géotechnique, 1999, 49(2): 143–159
Ng C W W, Pang Y W. Experimental investigationof soil-water characteristics of a volcanic soil. Canadian Geotechnical Journal , 2000, 37(6): 1252–1264
Romero E. Characterizationand thermo-hydro-mechanical Behavior of unsaturated boom clay. Dissertation for the Doctoral Degree. Barcelona, Spain: Universitat Politècnica de Catalunya, 1999
Sun D A, Sheng D, Cui H B, Sloan S W. A density-dependentelastoplastic hydro-mechanical model for unsaturated compacted soils. International Journal for Numerical AnalyticalMethod in Geomechanics, 2007, 31(11): 1257–1279
Huang S, Barbour S L, Fredlund D G. Development and verification of a coefficient of permeabilityfunction for a deformable unsaturated soil. Canadian Geotechnical Journal, 1998, 35(3): 411–425
Wheeler S J. Inclusion of specific water volume within an elasto-plastic modelfor unsaturated soil. Canadian GeotechnicalJournal, 1996, 33(8): 42–57
Rampino C, Mancuso C, Vinale F. Experimental Behavior and modelling of an unsaturatedcompacted soil. Canadian Geotechnical Journal, 2000, 37(4): 748–763
Barrera M. Estudioexperimental del comportamiento hidromecánico de suelos colapsables. Dissertation for the Doctoral Degree. Barcelona, Spain: Universidad Politécnica de Catalunya, 2002
Sharma R S. Mechanical Behavior of unsaturated highly expansive clays. Dissertation for the Doctoral Degree. Oxford, UK: University of Oxford, 1998
Sivakumar V. Acritical state framework for unsaturated soil. Dissertation for the Doctoral Degree. Sheffield, UK: University of Sheffield, 1993
Kawai K, Kato S, Karube D. The model for water retention curve considering effectsof void ratio. In: Rahardjo H, Toll D G, Leong E C, eds. Proceedings ofthe 1st Asian Conference on Unsaturated Soils, Singapore. Rotterdam: Balkema, 2000, 329–334
Gallipoli D, Gens A, Sharma R, Vaunat J. Anelastoplastic model for unsaturated soil incoporating the effectsof suction and degree of saturation on mechanical Behavior. Géotechnique, 2003, 53(1): 123–135
Nitao J J, Bear J. Potentials and their rolein transport in porous media. Water ResourcesResearch , 1996, 32(2): 255–250
Buisson M S R, Wheller S J. Inclusion of hydraulic hysteresisin a new elasto-plastic framework for unsaturated soils. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils,Trento, Italy. Rotterdam: Balkema, 2000, 109–119
Topp G C. Soil water hysteresis in silt loam and clay loam soils. Water Resources, 1971, 7(4): 914–920
Gili J A, Alonso E E. Microstructural deformationmechanisms of unsaturated granular soils. International Journal for Numerical Analytical Method in Geomechanics, 2002, 26(5) 433–468
Skempton A W. Terzaghi’s discovery of effective stress. In: Terzaghi K, ed. From Theory toPractice in Soil Mechanics. NewYork: John Wiley, 1960
Lade P V, De Boer R. The concept of effectivestress for soil, concrete and rock. Géotechnique, 1997, 47(1): 61–78
Jennings J E B. Discussion on M.S. Youssef’s paper, In: Proceedings of the4th International Conference on Soil Mechanics, ISSMFE. 1957, 3: 168
Croney D, Coleman J D, Black W P M. Movement and distribution of water in soil in relationto highway design and performance. HighwayResearch Board, Spec. Report No. 40, 1958
Bishop A W. The principle of effective stress. TeckniskUkeblad, 1959, 106(39): 859–863
Aitchison G D. Relationships of moisture stress functions in unsaturated soils. In: Conference Pore Pressures, Institution of CivilEngineering. London: Buttherworths, 1960
Jennings J E B, Burland J B. Limitations to the use ofeffective stress in partly saturated soils. Géotechnique, 1962, 12(2): 125–144
Burland J B. Some aspects of the mechanical behavior of partly saturated soils. In: Aitchison G D, ed. Proceedings of the Conference on Moisture Equilibria and Moisturechanges in the Soils Beneath Covered Areas, Australia. London: Butterworths, 1965, 270–278
Fredlund D G, Morgenstern N R. Stress state variables forunsaturated soils. Journal of GeotechnicalEngineering Division, ASCE, 1977, 103 (GT5): 447–466
Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Géotechnique, 1990, 40(3): 405–430
Gens A, Alonso E E. A framework for the Behaviorof unsaturated expansive clays. CanadianGeotechnical Journal, 1992, 29: 1013–1032

doi: 10.1139/t92-120
Li X S. Thermodynamics-based constitutive framework for unsaturated soils.2: A basic triaxial model. Géotechnique, 2007, 57(5): 423–435
Tamagnini R. Anextended Cam-clay model for unsaturated soils with hydraulic hysteresis. Geotechnique, 2004, 54(3): 223–228
Öberg A-L, Sällfors G. A rational approach to thedetermination of the shear strength parameters of unsaturated soils. In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils,Paris, France. Rotterdam: Balkema, 1995, 1: 151–158
Garven E A, Vanapalli S K. Evaluation of empirical proceduresfor predicting the shear strength of unsaturated soils.In: Proceedings of the 5th International Congresson Unsaturated Soil Mechanics. Arizona, USA: ASCE, 2006
Houlsby G. Thework input to an unsaturated granular material. Géotechnique, 1997, 47(1): 193–196
Gray W G, Schrefler B A. Thermodynamics approach toeffective stress in partially saturated porous media. European Journal of Mechanics-A/Solids, 2001, 20(4): 521–538

doi: 10.1016/S0997-7538(01)01158-5
Laloui L, Klubertanz G, Vulliet L. Solid-liquid-air coupling in multiphase porous media. International Journal for Numerical and AnalyticalMethods in Geomechanics, 2003, 27(3): 183–206

doi: 10.1002/nag.269
Li X S. Effective stress in unsaturated soil: a microstructural analysis. Géotechnique, 2003, 53(2): 273–277
Coussy O. Poromechanics. Oxford, England: John Wiley & Sons, 2004
Alonso E E, Pereira J-M, Vaunat J, Olivella S. Amicrostructurally-based effective stress for unsaturated soils. Géotechnique, 2009, 59 (in print)
Rojas E. Anequivalent stress equation for unsaturated soils. Part 1: The equivalent stress equation. International Journal ofGeomechanics, ASCE, 2008 (in press)

doi: 10.1061/(ASCE)1532-3641(2008)8:5(285)
Haines W B. Studies in the physical properties of soils. II. A note on the cohesiondeveloped by capillary forces in an ideal soil. The Journal of Agricultural Science, 1925, 15: 529–535

doi: 10.1017/S0021859600082460
Murray E J. An equation of state for unsaturated soils. Canadian Geotechnical Journal, 2002, 39(1): 125–140

doi: 10.1139/t01-087
Desai C S, Wang Z. Disturbed state model forporous saturated materials. InternationalJournal of Geomechanics, ASCE, 2003, 3(2): 260–265

doi: 10.1061/(ASCE)1532-3641(2003)3:2(260)
Bishop A W, Alpan I, Blight G E, Donald I B. Factors controlling the strength of partly saturated cohesive soils. In: Conference on Stength of Cohesive Soils, Boulder,Colorado, USA. Arizona: ASCE, 1960, 503–532
Escario V, Saez J. The shear strength of partiallysaturated soils. Géotechnique, 1986, 36(3): 453–456
Gan J K M, Fredlund D G. Multistage direct shear testingof unsaturated soils. Geotechnical TestingJournal, 1988, 11(2): 132–138

doi: 10.1520/GTJ10959J
Toll D G. A framework for unsaturated soil Behavior. Géotechnique, 1990, 40(1): 31–44
Fredlund D G, Xing A, Fredlund M D, Barbour S L. The relationship of the unsaturated soil shear strength to the soilwater characteristic curve. Canadian GeotechnicalJournal, 1995, 33: 440–448

doi: 10.1139/t96-065
Miao L, Yin Z, Liu S. Empirical function representing the shear strength ofunsaturated soils. Geotechnical TestingJournal, 2001, 24(2): 220–223

doi: 10.1520/GTJ11342J
Toll D G, Ong B H. Critical-state parametersfor an unsaturated residual sandy clay. Géotechnique, 2003, 53(1): 93–103
Tarantino A, Tombolato S. Coupling of hydraulic andmechanical Behavior in unsaturated compacted clay. Géotechnique, 2005, 55(4):307–317
Vanapalli S K, Fredlund D G. Comparison of different proceduresto predict the shear strength of unsaturated soils uses the soil-watercharacteristic curve. Geo-Denver 2000,American Society of Civil Engineers, Special Publication, 2000, 99: 195–209
Vaunat J, Romero E, Marchi C, Jommi C. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedingsof the 3rd International Conference on Unsaturated Soils, Recife,Brazil. Rotterdam: Balkema, 2002, 245–251
Tarantino A. Apossible critical state framework for unsaturated compacted soils. Géotechnique, 2007, 57(4): 385–389
Han K K, Rahardjo H, Broms B B. Effect of hysteresis on the shear stength of a residualsoil. In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils,Paris, France. Rotterdam: Balkema,1995, 499–504
Boso M. Shearstrength Behavior of a reconstituted partially saturated clayey silt.Dissertation for the Doctoral Degree. Trento, Italy: Universitàdegli Studi di Trento, 2005
Romero E, Gens A, Lloret A. Water permeability, water retention curve and microstructureof unsaturated compacted Boom clay. EngineeringGeology, 1999, 54(1―2):117–127
Sridharan A, Altschaeffl A G, Diamond S. Pore size distributions studies. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(5): 771–787
Fisher R A. On the capillary forces in an ideal soil; correction of formulaegiven by W.B. Haines. The Journal of AgriculturalScience, 1926, 16: 492–505

doi: 10.1017/S0021859600007838
Karube D, Kato S. An ideal unsaturated soiland the Bishop's soil. In: Proceedingsof the 13th International Conference on Soil. Mech. Found. Engng.New. Delhi. 1994, 1:43–46
Karube D, Kawai K. The role of pore water inthe mechanical behavior of unsaturated soils. Geotechnical and Geological Engineering, 2001, 19: 211–241

doi: 10.1023/A:1013188200053
Chateau X, Dormieux L. Micromechanics of. saturatedand unsaturated porous media. InternationalJournal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 831–844

doi: 10.1002/nag.227
Molenkamp F, Nazemi A H. Interactions between tworough spheres, water bridge and water vapour. Géotechnique, 2003, 53(2): 255–264
Wheeler S J, Sharma R S, Buisson M S R. Coupling hydraulic hysteresis and stress-strain Behaviorin unsaturated soils. Géotechnique, 2003, 53(1): 41–54
Alonso E E. Exploring the limits of unsaturated soil mechanics: The behaviorof coarse granular soil and rockfill. The11th Buchanan Lecture. University of Texas A&M, 2003
Oldecop L A, Alonso E E. A model for rockfill compressibility. Géotechnique, 2001, 51(2): 127–140
Oldecop L A, Alonso E E. Theoretical investigationof the time-dependent Behavior of rockfill. Géotechnique, 2007, 57(3): 289–301

doi: 10.1680/geot.2007.57.3.289
Chávez C, Alonso E E. A constitutive model forcrushed granular aggregates which includes suction effects. Soils and Foundations, 2003, 43(4): 215–227
Suriol J, Gens A, Alonso E E. Behavior of compacted soils in suction-controlled oedometer. In: Technical committee of the 2nd Internationalconference on Unsaturated Soils, eds. The Proceedings of the 2nd InternationalConference on Unsaturated Soils, Beijing, China. Netherlands: Springer, 1998, 438–443
Alonso E E, Vaunat J. An appraisal of structurelevel interactions in expansive soils. In: Ribeiro e Sousa L, Fernandes M M, Vargas E Jr., Azevedo R, eds. Applications of Computational Mechanics inGeotechncial Engineering, Proceedings of the 5th International Workshop,Guimaraes, Portugal. Rotterdam: Balkema. 2001,17–30
Alonso E E. Modelling expansive soil Behavior. In: Technical committee of the 2nd International conference on UnsaturatedSoils, eds. The Proceedings of the 2nd International Conference onUnsaturated Soils, Beijing, China. Netherlands: Springer, 1998, 37–70
Alonso E E, Vaunat J, Gens A. Modelling the mechanical Behavior of expansive clays. Engineering Geology, 1999, 54: 173–183

doi: 10.1016/S0013-7952(99)00079-4
Gens A. Constitutivemodelling: application to compacted soils. I In: Alonso E, Delage P, eds. Proceedings of the 1st International Conference on Unsaturated Soils,Paris, France. Rotterdam: Balkema, 1995, 1179–1200
Jommi C. Remarkson the constitutive modelling of unsaturated soils. In: Tarantino A, Macuso C, eds. Experimental Evidence and Theoretical Approaches in Unsaturated Soils,Trento, Italy. Rotterdam: Blakema, 2000, 139–154
Gens A, Sánchez M, Sheng D. On constitutive modelling of unsaturated soils. Acta Geotechnica, 2006, 1:137–147

doi: 10.1007/s11440-006-0013-9
Alonso E E, Gens A, Hight D W. General Report: The behavior of partially saturated soils. In: Hanrahan E T, Orr T L L, Widdis T F, eds. Proceedings of the 9th European Conferenceon Soil Mechanics and Foundations Engineering, Dublin. London: Taylorand Francis, 1987, 1087–1146
Alonso E E, Josa A Y, Gens A. Modelling the behavior of compacted soils upon wetting,Raul J. Marsal Volume, Soil Mech. Soc.Of Mexico (SMMS), México. 1992
Sivakumar, V, Wheeler S J. Influence of compaction procedureon the mechanical Behavior of an unsaturated compacted clay. Part1: Wetting and isotropic compression. Géotechnique, 2000, 50(4): 359–368

doi: 10.1680/geot.2000.50.4.359
Wheeler S, Sivakumar V. An elasto-plastic criticalstate framework for unsaturated soils. Géotechnique, 1995, 45(1): 35–53

doi: 10.1680/geot.1995.45.1.35
Tarantino A, De Col E. Compaction Behavior of clay. Géotechnique, 2008, 58(3): 199–213

doi: 10.1680/geot.2008.58.3.199
Marsal R J, Arellano L R, Guzmán M A, Adame H. ElInfernillo: Behavior of dams built in Mexico. Instituto de Ingeniería, UNAM, Mexico, 1976
Naylor D J, Maranha das Neves E, Mattar D, Veiga Pinto A A, Jr. Prediction of construction performance of Beliche Dam. Géotechnique, 1986, 36(3): 359–376

doi: 10.1680/geot.1986.36.3.359
Naylor D J, Maranha das Neves E, Veiga Pinto A A. A back-analysis of BelicheDam. Géotechnique, 1997, 47(2): 221–233

doi: 10.1680/geot.1997.47.2.221
Soriano A, Sánchez FJ. Settlementsof railroad high embankments. In: Proceedingsof XII European Conference on Soil Mechanics and Geotechnical Engineering,Netherlands. 1999
Justo J L, Durand P. Settlement-time Behaviorof granular embankments. InternationalJournal for Numerical Analytical Method in Geomechanics, 2000, 24(3): 281–303

doi: 10.1002/(SICI)1096-9853(200003)24:3<281::AID-NAG66>3.0.CO;2-S
Leroueil S, Hight D W. Behavior and properties ofnatural soils and soft rocks. In:Hight D W, Leroueil S, Phoon K K, Tan T S, eds. Characterisation and Engineering Properties of Natural Soils, Proceedingsof the International Workshop, Singapore. Swets and Zeitlinger, 2003, 29–254
Marsal R J. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(2): 27–43
Charles J A, Watts K S. The influence of confiningpressure on the shear strength of compacted rockfill. Géotechnique, 1980, 4(3):353–398

doi: 10.1680/geot.1980.30.4.353
De Mello V F B. Seventh Rankine Lecture: Reflections on design decisions of practicalsignificance to embankment dams. Géotechnique, 1977, 27(3): 279–356

doi: 10.1680/geot.1977.27.3.281
Hardin B O. Crushing of soil particles. Journal ofGeotechnical Engineering, ASCE, 1985, 111(10): 1177–1192

doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
Fumagalli E. Testson cohesionless materials for rockfill dams. Journal of the Soil Mechanics and Foundations Division, ASCE , 1969, 95(SM1): 313–330
Marachi N D, Chan C K, Seed H B, Duncan J M. Strength and deformation characteristics of rockfill materials. Department of Civil Engineering, Report No. TE-69-5,University of California, 1969
Sowers G F, Williams R C, Wallace T S. Compressibility of broken rock and settlement of rockfills. In: Proceedings of the 6th ICSMFE, 2, Montreal: 1965, 561–565
Terzaghi K. Discussionon salt springs and lower bear riverdams. Transactruns of ASCE, 1960, 125(2): 139–148
Veiga Pinto A A. Prediction of the structural Behavior of rockfill dams. Dissertation of the Doctoral Degree. Lisbon, Portugal: National Laboratory of Civil Engineering, Portugal, 1983
Fredlund D G, Rahardjo H. Soil Mechanics for UnsaturatedSoils. New York: John Wiley & Sons, 1993
Cundall P A, Strack O D L. A discrete numerical modelfor granular assemblies. Géotechnique, 1979, 29(1):47–65

doi: 10.1680/geot.1979.29.1.47
Charles R J. Static fatigue of glass. Journal of AppliedPhysics, 1958, 29: 1549–1560

doi: 10.1063/1.1722991
Mesri G, Godlewski P M. Time and stress compressibilityinterrelationship. Journal of the GeotechnicalEngineering Division, 1977, 103(GT5): 417–430
McDowell G R. Micromechanics of creep of granular materials. Géotechnique, 2003, 53(10): 915–916
Chávez C. Estudiodel comportamiento triaxial de materiales granulares de tamañomedio; con énfasis en la influencia de la succión. Dissertation for the Doctoral Degree. España: Universidad Politécnica de Cataluña, 2004
Cardoso R. Hydro-mechanicalBehavior of compacted marls. Dissertationfor the Doctoral Degree. Lisbon: Instituto Superior Técnico, Lisbon TechnicalUniversity, 2009
Cardoso R, Alonso E E. Degradation of compactedmarls: a microstructural investigation. Soils and Foundations, 2009, 49(3): 315–327
Alonso E E, Alcoverro J. Swelling and degradationof argillaceous rocks. In: Juca J F T, De Campos T M P, Marino F A M, eds. Proceedings of the 3rd International Conference on Unsaturated Soils,Recif, Brazil. Rotterdam: Balkema, 2002, 37–70
Pinyol N M, Alonso E E, Vaunat J. A constitutive model for soft clayey rocks that includesweathering effects. Géotechnique, 2007, 57(2): 137–151

doi: 10.1680/geot.2007.57.2.137
Burland J B. On the compressibility and shear strength of natural clays. Géotechnique, 1990, 40(3): 329–378

doi: 10.1680/geot.1990.40.3.329
Alonso E E, Gens A. On the mechanical Behaviorof arid soils. In: Fookes P G, Parry R H, eds. Engineering Characteristicsof Arid Soils, Proceedings of the 1st International Symposium, London. Rotterdam: Balkema, 1994, 173–206
van Genuchten M T. A closed-form equation for predicting the hydraulic conductivityof unsaturated soils. Soil Science Societyof America Journal, 1980, 44(5): 892–898
[1] Süleyman ÖZEN, Muhammet Gökhan ALTUN, Ali MARDANI-AGHABAGLOU, Kambiz RAMYAR. Effect of nonionic side chain length of polycarboxylate-ether-based high-range water-reducing admixture on properties of cementitious systems[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1573-1582.
[2] Fulin Qu, Wengui Li, Xiaohui Zeng, Zhiyu Luo, Kejin Wang, Daichao Sheng. Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral admixture[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1545-1560.
[3] Xiao-Yong WANG. Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride ingress[J]. Front. Struct. Civ. Eng., 2020, 14(2): 473-486.
[4] Rekha SINGH, Sanjay GOEL. Experimental investigation on mechanical properties of binary and ternary blended pervious concrete[J]. Front. Struct. Civ. Eng., 2020, 14(1): 229-240.
[5] Narjes SOLTANI, Mohammad ALEMBAGHERI, Mohammad Houshmand KHANEGHAHI. Risk-based probabilistic thermal-stress analysis of concrete arch dams[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1007-1019.
[6] Chuangmin LI, Fanbo NING, Yuanyuan LI. Effect of carbon black on the dynamic moduli of asphalt mixtures and its master curves[J]. Front. Struct. Civ. Eng., 2019, 13(4): 918-925.
[7] Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF. Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers using extreme vertices mixture design[J]. Front. Struct. Civ. Eng., 2019, 13(4): 821-830.
[8] Hamid Taghavi GANJI, Mohammad ALEMBAGHERI, Mohammad Houshmand KHANEGHAHI. Evaluation of seismic reliability of gravity dam-reservoir-inhomogeneous foundation coupled system[J]. Front. Struct. Civ. Eng., 2019, 13(3): 701-715.
[9] M. Houshmand KHANEGHAHI, M. ALEMBAGHERI, N. SOLTANI. Reliability and variance-based sensitivity analysis of arch dams during construction and reservoir impoundment[J]. Front. Struct. Civ. Eng., 2019, 13(3): 526-541.
[10] Neftalí SARMIENTO-SOLANO, Miguel P. ROMO. Dynamic in-plane transversal normal stresses in the concrete face of CFRD[J]. Front. Struct. Civ. Eng., 2019, 13(1): 135-148.
[11] Farhoud KALATEH. Dynamic failure analysis of concrete dams under air blast using coupled Euler-Lagrange finite element method[J]. Front. Struct. Civ. Eng., 2019, 13(1): 15-37.
[12] Neftalí SARMIENTO-SOLANO, Miguel P. ROMO. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling[J]. Front. Struct. Civ. Eng., 2018, 12(1): 81-91.
[13] Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics[J]. Front. Struct. Civ. Eng., 2017, 11(3): 329-337.
[14] Yucheng HUANG, Lun JI, Rui WEN, Ming ZHANG. A methodology of implementing target mixing ratio for asphalt mixture[J]. Front. Struct. Civ. Eng., 2017, 11(3): 308-314.
[15] Mahdi AREZOUMANDI. Feasibility of crack free reinforced concrete bridge deck from materials composition perspective: a state of the art review[J]. Front. Struct. Civ. Eng., 2015, 9(1): 91-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed