Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 209-227    https://doi.org/10.1007/s11709-017-0388-8
REVIEW
Dynamic material performance of cold-formed steel hollow sections: a state-of-the-art review
Cameron B. RITCHIE1, Jeffrey A. PACKER1(), Xiao-Ling ZHAO2, Amin HEIDARPOUR2, Yiyi CHEN3
1. Department of Civil Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
2. Department of Civil Engineering, Monash University, Victoria 3800, Australia
3. College of Civil Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(4512 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a literature review focused on the material performance of cold-formed, carbon steel, hollow structural sections under impulsive (highly dynamic) loading. Impulsive loading, represented by impact and blast, is characterized by a very rapid, time-dependent loading regime in the affected members and materials. Thus, the effect of high-strain-rate loading is initially reviewed. Next the material toughness, an important energy-absorption property and one measure of a material’s ability to arrest fracture, is considered by means of studying the Charpy V-notch behavior. The response of hollow sections under axial and lateral impact loading is then reviewed. ??Studies of blast on hollow sections, most of which fall under the categories of contact/near-field loading or far-field loading are presented. Under large-scale field blast experiments, cold-formed hollow sections have shown excellent behavior. Software for modeling blast loading and structural response, the latter including single degree of freedom analysis and explicit finite element analysis, is described and discussed.

Keywords cold-formed steel      hollow structural sections      composites      impulsive loading      impact      blast      experimentation      analysis      material properties     
Corresponding Author(s): Jeffrey A. PACKER   
Online First Date: 19 April 2017    Issue Date: 19 May 2017
 Cite this article:   
Cameron B. RITCHIE,Jeffrey A. PACKER,Xiao-Ling ZHAO, et al. Dynamic material performance of cold-formed steel hollow sections: a state-of-the-art review[J]. Front. Struct. Civ. Eng., 2017, 11(2): 209-227.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0388-8
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/209
ASTM specificationsfsy nominal
(MPa)
DIFyDIFu
bending/sheartension/compression
A362481.291.191.10
A588up to 3451.191.121.05
A5146901.091.051.00
A572up to 4481.191.101.00
A9923451.191.101.00
Tab.1  DIFy and DIFu values for various structural steels under low pressure explosion, with strain rates in the order of 0.1 s1 (adapted from Ref. [])
Fig.1  DIFy values at various strain rates for two ASTM plate steels (adapted from Ref. [])
Fig.2  Typical stress-strain curves for hot-finished steel and dynamic design stress (adapted from Ref. [])
steel typesstrain rate ε˙ (s1)resultreference
ASTM A36, ASTM A441
Q–T plate
up to 1.4 × 103
(Tensile)
DIFy as a function of
ε˙ for each steel type.
Rao et al. []
structural steel,
reinforcing bars,
deformed wires
Up to 10
(tensile)
DIFy as a linear function of
log(ε˙) and the static yield stress
Soroushian and Choi []
sheet steel, cold-worked
and high-strength
1.0
(tensile &
compressive)
DIFy as a quadratic function of
log(ε˙) for each steel grade
Kassar and Yu []
reinforcing barsup to 225
(tensile)
DIFy and DIFu as exponential
functions of ε˙ and the static
yield stress – adopted by
S850-12 [7]
Malvar and Crawford []
reinforcing barsup to 0.1
(tensile)
DIFy and DIFu empirical
observations versus test
temperature
Filiatrault and Holleran []
plate, W-sectionsup to 2500
(tensile &
compressive)
DIFy as an exponential
function of ε˙
Luecke et al. []
cold-formed RHS
(direct- and
continuous-formed)
from 100
to 1000
(tensile &
compressive)
DIFy for RHS flats and corners
as an exponential
function of ε˙
Sun and Packer []
cold-formed RHS0.1 to 20DIFy and DIFu for RHS flats and corners
function of ε˙
Ritchie et al. []
Tab.2  Experimental strain-rate studies on steel
Fig.3  DIFy versus strain rate, considering very high strain rates
flexural, ε˙ = 100 s1
RHS typeb0/tflat facecorneraverage DIFy of entire
cross-section
fsy (MPa)area (mm2)DIFyfsy (MPa)area (mm2)DIFy
direct-formed1245052281.2865016361.071.23
continuous-formed1242049911.1652016921.071.14
Tab.3  DIFy values for cold-formed RHS specimens under flexural loading (ε˙ = 100 s1)
Fig.4  Approximate relationship between the CVN energy-temperature curve and the fracture behavior of a steel component (adapted from Sedlacek et al. [])
type of sectionreferences
cold-formed RHSDagg et al. [], Soininen [], Ritakallio [], Kosteski et al. [], Puthli et al. []
cold-formed CHSRitakallio []
cold-formed and stress-relieved RHSKosteski et al. []
hot-finished RHS and CHSStranghöner et al. [], Kosteski et al. []
Tab.4  Summary of the major sources in Feldmann et al. [] for CVN impact toughness for hollow sections
Fig.5  Effect of cold-forming on CVN impact energy (adapted from Sedlacek et al. [])
Fig.6  CVN toughness difference between flat and corner regions of RHS []
Fig.7  Cold-formed RHS (350 MPa yield grade) under large-deformation axial loading []
Fig.8  Basic collapse elements used for plastic mechanism analysis of RHS []. (a) Type I; (b) Type II
Fig.9  Typical numerical (FE) simulation of axial impact loading []
structural elementcross-section shapematerialyield stress (MPa)ultimate tensile strength (MPa)reference
bollard systemsCHSsteel286500Maduliat et al. []
CHSsteel347546Chen et al. []
columnsRHSgrade 304 stainless steel610820Yousuf et al. []
RHScold-formed C350473504Bambach et al. []
CHSsteel247363Han et al. []
RHSstainless steel
steel
600
40
680
450
Remennikov et al. []
CHSsteel340438Deng et al. []
CHSsteel232-298not reportedWang et al. []
CHScold-formed S355405556Wang et al. [,]
CHSseamless tube516538Zeinoddini et al. []
RHScold-formed486506Jama et al. []
roadside barriersRHSsteel350Wu et al. []
Hao et al. []
general purpose energy absorbersCHSaluminum150not reportedFan et al. []
CHSsteel339not reportedWang et al. []
Tab.5  Research on hollow sections under lateral impact loading
Fig.10  Failure modes of CHS bollards after lateral impact loading []
Fig.11  CHS failure mechanism: (a) observed collapse mode; (b) schematic representation of collapse mode []
Fig.12  Three-tube system subjected to lateral impact loading
loading typecross-section type(s)cross-section shapetube materialyield stress (MPa)ultimate tensilereference
contact/near-fieldun-filledSHSmild steel469 – 693strength (MPa)not publishedWegener and Martin []
un-filledSHScold-formed384 – 430440 – 495Jama et al. [], Jama et al. [], Bambach [], Karagiozova et al. []
un-filledSHSaluminum171 – 182191 – 210Bambach [], Bambach []
un-filledCHSelastic, perfectly plastic metal100not publishedKaragiozova et al. []
un-filledRHSaluminum with CFRP110 – 170160 – 215Bambach et al. []
concrete-filledCHSASTM A500254 – 419not publishedFujikura et al. []
un-filled and concrete-filledSHSCold-formed, C350424470Remennikov and Uy [], Ngo et al. []
un-filledCHSQ325 steelnot publishednot publishedSong et al. []
concrete-filledCHS & SHSsteel312 – 485414 – 536Zhang et al. []
concrete-filled double-skin tube (CFDST)CHS & SHSChinese Standard GT/B 8162-2008360515Zhang et al. [],
Zhang et al. [],
Zhang et al. []
concrete-filledCHSsteel350not publishedChen et al. []
far-fieldun-filledCHS & SHSA572not publishednot publishedClubley []
un-filledCHS & RHSsteel207not publishedZhai et al. []
un-filledSHSsteel286not publishedDing et al. []
un-filled and concrete-filledSHSS355440 – 446519 – 526Walker et al. []
Ritchie et al. [], Ritchie et al. [], Ritchie et al. []
concrete-filled double-skin tube (CFDST)SHSS420/355 (dual-graded)423 – 446510 – 534Ritchie et al. []
energy-absorbersun-filledSHSmild steel and aluminum188 – 223not publishedTheobald and Nurick []
internal explosionaluminum foam-filled double-skinCHSAA6060 T5190345Shen et al. []
un-filledCHSstainless steel310not publishedLangdon et al. []
Tab.6  Research on blast behavior of tubular members
Fig.13  Global and local mid-span deformations for RHS 40×40×1.6 member subject to contact blast loading at various impulse levels []
Fig.14  Comparison of RHS deformations produced by near-field blast: (a) un-filled; (b) concrete-filled []
Fig.15  In-ground testing arrangement by Zhang et al. []. (a) schematic of test setup; (b) installed specimen
Fig.16  Blast parameter scaling chart []
Acarea of core concrete
Ascross-sectional area of hollow section
b0outside width of RHS member
Doutside diameter of CHS
fcstatic strength of concrete in compression
fdsdynamic design stress for steel in tension, compression and bending
fdypredicted dynamic yield stress for steel
fdupredicted dynamic ultimate strength for steel
fdvdynamic design stress in shear for steel
fsystatic yield stress of steel
fsunominal ultimate strength of steel
twall thickness of hollow section
ε˙strain rate (s1)
ALEarbitrary Lagrangian-Eulerian method
CHScircular hollow section
CFDcomputational fluid dynamics
CFRPcarbon fiber reinforced polymer
CFTconcrete-filled tube
CVNCharpy V-notch
DIFcdynamic increase factor for concrete in compression
DIFCFTdynamic increase factor for concrete-filled tube
DIFydynamic increase factor for steel yield stress
DIFudynamic increase factor for steel ultimate stress
FEfinite element
RHSrectangular or square hollow section
SDOFsingle degree of freedom
SHPBsplit Hopkinson pressure bar
YLMyield line mechanism
  
77 Bambach M R. Behaviour and design of aluminum hollow sections subjected to transverse blast loads. Thin-walled Structures, 2008, 46(12): 1370–1381
78 Karagiozova D, Yu T X, Lu G, Xiang X. Response of a circular metallic hollow beam to an impulsive loading. Thin-walled Structures, 2014, 80: 80–90
79 Bambach M R, Zhao X L, Jama H H. Energy absorbing characteristics of aluminium beams strengthened with CFRP subjected to transverse blast load. International Journal of Impact Engineering, 2010, 37(1): 37–49
80 Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading. Journal of Bridge Engineering, 2008, 13(6): 586–594
81 Remennikov A, Uy B. Explosive testing and modelling of square tubular steel columns for near-field detonations. Journal of Constructional Steel Research, 2014, 101: 290–303
82 Ngo T, Mohotti D, Remennikov A, Uy B. Numerical simulations of response of tubular steel beams to close-range explosions. Journal of Constructional Steel Research, 2015, 105: 151–163
83 Song K, Long Y, Ji C, Gao F. Plastic deformation of metal tubes subjected to lateral blast loads. Mathematical Problems in Engineering, 2014
84 Zhang F, Wu C, Wang H, Zhou Y. Numerical simulation of concrete filled steel tube columns against BLAST loads. Thin-walled Structures, 2015, 92: 82–92
85 Zhang F, Wu C, Li Z X, Zhao X L. Residual axial capacity of CFDST columns infilled with UHPFRC after close-range blast loading. Thin-walled Structures, 2015, 96: 314–327
86 Zhang F, Wu C, Zhao X L, Xiang H, Li Z X, Fang Q, Liu Z, Zhang Y, Heidarpour A, Packer J A. Heidarpour, A., Packer, J.A. Experimental study of CFDST columns infilled with UHPC under close-range blast loading. International Journal of Impact Engineering, 2016, 93: 184–195
87 Zhang F, Wu C, Zhao X L, Heidarpour A, Li Z. Experimental and numerical study of blast resistance of square CFDST columns with steel-fibre reinforced concrete. Engineering Structures, 2017 (in press)
88 Chen W, Guo Z, Zhang T, Zou H, Gu J. Near-field blast test on reactive powder concrete-filled steel tubular columns after exposure to fire. International Journal of Protective Structures, 2016, 7(2): 193–212
1 Liew J Y R. Survivability of steel frame structures subject to blast and fire. Journal of Constructional Steel Research, 2008, 64(7–8): 854–866
2 Luecke W E, McColskey J D, McCowan C N, Banovic S W, Fields R J, Foecke T J, Siewert T A, Gayle F W. Mechanical properties of structural steels – federal building and fire safety investigation of the world trade center disaster. NIST NCSTAR 1–3D Report, National Institute of Standards and Technology, Gaithersburg, MD, USA, 2005
3 Gilsanz R, Hamburger R, Barker D, Smith J L, Rahimian A. Design of blast resistant structures. Steel Design Guide No. 26, American Institute of Construction, Chicago, IL, USA, 2013
4 DOD. Structures to resist the effects of accidental explosions. UFC 3–340–02, Department of Defense, Washington, DC, USA, 2008
5 ASCE. Design of blast resistant buildings in petrochemical facilities. American Society of Civil Engineers, Reston, VA, USA, 2010
6 ASCE. Blast protection of buildings. ASCE/SEI 59–11, American Society of Civil Engineers, Reston, VA, USA, 2011
7 CSA. Design and assessment of buildings subjected to blast loads. S850–12, Canadian Standards Association, Toronto, Canada, 2012
8 Rao, N R N, Lohrmann, M, Tall, L. Effect of strain rate on the yield stress of structural steel.  Journal of Materials, ASTM, Vol. 1, No. 1, Publication No. 293, 1966
9 Soroushian P, Choi K. Steel mechanical properties at different strain rates. Journal of Structural Engineering, 1987, 113(4): 663–672
10 Kassar M, Yu W. Effect of strain rate on material properties of sheet steels. Journal of Structural Engineering, 1992, 118(11): 3136–3150
11 Malvar L J, Crawford J E. Dynamic increase factors for steel reinforcing bars. 28th.  Department of Defence Explosive Safety Board Seminar, Orlando, FL, USA, 1998
12 Filiatrault A, Holleran M. Stress-strain behaviour of reinforcing steel and concrete under seismic strain rates and low temperatures. Materials and Structures, 2001, 34(4): 235–239
13 Sun M, Packer J A. High strain rate behaviour of cold-formed rectangular hollow sections. Engineering Structures, 2014, 62–63: 181–192
14 Ritchie C B, Gow M I, Packer J A, Heidarpour A. Mechanical properties of hollow structural sections under elevated strain rates. Proceedings of the 11th Pacific Structural Steel Conference, Shanghai, China, 708–714, 2016
15 Mirmomeni M, Heidarpour A, Zhao X L, Hutchinson C R, Packer J A, Wu C. Mechanical properties of partially damaged structural steel induced by high strain rate loading at elevated temperatures – An experimental investigation. International Journal of Impact Engineering, 2015, 76: 178–188
16 Mirmomeni M, Heidarpour A, Zhao X L, Hutchinson C R, Packer J A, Wu C. Fracture behaviour and microstructural evolution of structural mild steel under the multi-hazard loading of high-strain-rate load followed by elevated temperature. Construction & Building Materials, 2016, 122: 760–771
17 Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31–48
18 Cowper G R, Symonds P R. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Division of Applied Mathematics Report, Brown University, Providence, RI, USA, 1957
19 Elfahal M M, Krauthammer T, Ohno T, Beppu M, Mindess S. Size effect for normal strength concrete cylinders subjected to axial impact. International Journal of Impact Engineering, 2005, 31(4): 461–481
20 CEB. Concrete structures under impact and impulsive loading. CEB Bulletin 187, Comité Euro-International du Béton, Lausanne, Switzerland, 1988
21 Xiao Y, Shan J, Zheng Q, Chen B, Shen Y. Experimental studies on concrete filled steel tubes under high strain rate loading. Journal of Materials in Civil Engineering, 2009, 21(10): 569–577
22 Malvar L J. Review of static and dynamic properties of steel reinforcing bars. Materials Journal. American Concrete Institute, 1988, 95(5): 609–616
23 Sedlacek G, Feldmann M, Kühn B, Tschickardt D, Höhler S, Müller C, Hensen W, Stranghöner N, Dahl W, Langenberg P, Münstermann S, Brozetti J, Raoul J, Pope R, Bijlaard F. Commentary and Worked Examples to EN 1993–1-10. Material Toughness and Through Thickness Properties and other Toughness Oriented Rules in EN 1993. JRC Scientific and Policy Report No. 47278, European Commission Joint Research Centre, Luxembourg, 2008
24 Feldmann M, Eichler B, Kühn B, Stranghöner N, Dahl W, Langenberg P, Kouhi J, Pope R, Sedlacek G, Ritakallio P, Iglesias G, Puthli R S, Packer J A, Krampen J. Choice of steel material to avoid brittle fracture for hollow section structures. JRC Scientific and Policy Report No. 72702, European Commission Joint Research Centre, Luxembourg, 2012
25 Dagg H M, Davis K, Hicks J W. Charpy impact tests on cold-formed RHS manufactured from continuous cast fully killed steel.  Proceedings of the Pacific Structural Steel Conference, Australian Institute of Steel Construction, Queensland, Australia, 1989
26 Soininen R. Fracture behaviour and assessment of design requirements against fracture in welded steel structures made of cold-formed hollow sections. Tieteellisiä Julkaisuja Research Papers 52, Lappeenranta University of Technology, Lappeenranta, Finland, 1996
27 Ritakallio P. Ruukki cold-formed hollow sections – Grade S355J2H – Random samples. Private Communication, Rauterruukki Oyj, Confidential Test Data, 12 April, 2010
28 Kosteski N, Packer J A, Puthli R S. Notch toughness of cold-formed hollow sections. Final (Revision 2) Report to CIDECT on Programme 1B, CIDECT Report 1B–2/03, October, 2003
29 Puthli R, Herion S, Boellinghaus T, Florian W.Welding in cold-formed areas of rectangular hollow sections. Draft Final Report on Programme 1A, CIDECT Report 1A–5/04, March, 2004
30 Stranghöner N, Lorenz C, Berg J. Zähigkeitsuntersuchungen an warmgefertigten hohlprofilen.  Versuchsbericht für Vallourec & Mannesmann, Düsseldorf, Institut für Metall- und Leichtbau, Universität Duisburg-Essen, Germany, 2010
31 Kosteski N, Packer J A, Puthli R S. Notch toughness of internationally produced hollow structural sections. Journal of Structural Engineering, 2005, 131(2): 279–286
32 Stranghöner N, Krampen J, Lorenz C. Impact toughness behaviour of hot-finished hollow sections at low temperatures. Proceedings of the 22nd. International Offshore and Polar Engineering Conference, Rhodes, Greece, 118–125, 2012
33 Sun M, Packer J A. Charpy V-notch impact toughness of cold-formed rectangular hollow sections. Journal of Constructional Steel Research, 2014, 97: 114–126
34 Ritakallio P, Björk T. Low-temperature ductility and structural behaviour of cold-formed hollow section structures – progress during the past two decades. Steel Construction, 2014, 7(2): 107–115
35 CEN. Cold formed welded structural hollow sections of non-alloy and fine grain steels – Part 1: Technical Delivery Conditions. EN10219–1:2006(E), European Committee for Standardisation, Brussels, Belgium, 2006
36 CEN. Cold formed welded structural hollow sections of non-alloy and fine grain steels – Part 2: Tolerances. EN10219–2:2006(E), European Committee for Standardisation, Brussels, Belgium, 2006
37 Puthli R, Packer J A. Structural design using cold-formed hollow sections. Steel Construction, 2013, 6(2): 150–157
38 Sun M, Packer J A. Direct-formed and continuous-formed rectangular hollow sections – Comparison of static properties. Journal of Constructional Steel Research, 2014, 92: 67–78
39 ASTM. Standard specification for cold-formed welded and seamless carbon steel structural tubing in rounds and shapes. ASTM A500/A500M–13, American Society for Testing and Materials, West Conshohocken, PA, USA, 2013
40 MOC. Cold formed steel hollow sections for building structures. JG/T 178–2005. Ministry of Construction, Beijing, China, 2005
41 ASTM. Standard specification for cold-formed welded carbon steel hollow structural sections (HSS). ASTM A1085–13, American Society for Testing and Materials, West Conshohocken, PA, USA, 2013
42 AASHTO. AASHTO LRFD bridge design specifications. 7th ed, American Association of State Highway and Transportation Officials, Washington, DC, USA, 2016
43 ASTM. Standard test methods and definitions for mechanical testing of steel products. ASTM A370–09a. American Society for Testing and Materials, West Conshohocken, PA, USA, 2009
44 Ritakallio P. The effect of steel strip on the quality of cold-formed hollow sections. In: Proceedings of the 15th. International Symposium on Tubular Structures. Rio de Janeiro, Brazil, 605–612, 2015
45 Bambach M R, Elchalakani M. Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation. Thin-walled Structures, 2007, 45(2): 159–170
46 Abramowicz W, Jones N. Dynamic axial crushing of square tubes. International Journal of Impact Engineering, 1984, 2(2): 179–208
47 Kohar C P, Mohammadi M, Mishra R K, Inal K. Effects of elastic–plastic behaviour on the axial crush response of square tubes. Thin-walled Structures, 2015, 93: 64–87
48 Pipkorn B, Håland Y. Proposed variable stiffness of vehicle longitudinal frontal members. International Journal of Crashworthiness, 2005, 10(6): 603–608
49 Abramowicz W, Jones N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. International Journal of Impact Engineering, 1997, 19(5–6): 415–437
50 Grzebieta R H. An alternative method for determining the behaviour of round stocky tubes subjected to an axial crush load. Thin-walled Structures, 1990, 9(1–4): 61–89
51 Maduliat S, Ngo T D, Tran P, Lumantarna R. Performance of hollow steel tube bollards under quasi-static and lateral impact load. Thin-walled Structures, 2015, 88: 41–47
52 Chen L, Xiao Y, Xiao G, Liu C L, Agrawal A K. Test and numerical simulation of truck collision with anti-ram bollards. International Journal of Impact Engineering, 2015, 75: 30–39
53 Yousuf M, Uy B, Tao Z, Remennikov A, Liew J Y R. Transverse impact resistance of hollow and concrete filled stainless steel columns. Journal of Constructional Steel Research, 2013, 82: 177–189
54 Bambach M R, Jama H, Zhao X L, Grzebieta R H. Hollow and concrete filled steel hollow sections under transverse impact loads. Engineering Structures, 2008, 30(10): 2859–2870
55 Han L H, Hou C C, Zhao X L, Rasmussen K J R. Behaviour of high-strength concrete filled steel tubes under transverse impact loading.  Journal  of  Constructional Steel  Research, 2014, 92: 25–39
56 Remennikov A M, Kong S Y, Uy B. Response of foam- and concrete-filled square steel tubes under low-velocity impact loading. Journal of Performance of Constructed Facilities, 2011, 25(5): 373–381
57 Deng Y, Tuan C Y, Xiao Y. Flexural behaviour of concrete-filled circular steel tubes under high-strain rate impact loading. Journal of Structural Engineering, 2012, 138(3): 449–456
58 Wang R, Han L H, Hou C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model. Journal of Constructional Steel Research, 2013, 80: 188–201
59 Wang Y, Qian X D, Liew J Y R, Zhang M H. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact. International Journal of Impact Engineering, 2014, 72: 1–16
60 Wang Y, Qian X D, Liew J Y R, Zhang M H. Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise. Thin-walled Structures, 2015, 87: 76–88
61 Zeinoddini M, Parke G A R, Harding J E. Axially pre-loaded steel tubes subjected to lateral impacts: An experimental study. International Journal of Impact Engineering, 2002, 27(6): 669–690
62 Jama H H, Bambach M R, Grzebieta R H, Zhao X L. Flexural response of fixed-ended tubular steel beams strengthened with CFRP subjected to impact loads. Proceedings of the 8th International Conference on Steel, Space & Composite Structures, Kuala Lumpur, Malaysia, 229–235, 2006
63 Wu C Q, Hao H, Deeks A J. Numerical analysis of the two-rail steel RHS traffic barrier to vehicle impact. Australian Journal of Structural Engineering, 2005, 6(1): 63–76
64 Hao H, Deeks A J, Wu C Q. Numerical simulations of the performance of steel guardrails under vehicle impact. Transactions of Tianjin University, 2008, 14(5): 318–323
65 Fan Z H, Shen J J, Lu G X, Ruan D. Dynamic lateral crushing of empty and sandwich tubes. International Journal of Impact Engineering, 2013, 53: 3–16
66 Wang H B, Yang J L, Liu H, Sun Y X, Yu T X. Internally nested circular tube system subjected to lateral impact loading. Thin-walled Structures, 2015, 91: 72–81
67 Elchalakani M, Zhao X L, Grzebieta R H. Bending tests to determine slenderness limits for cold-formed circular hollow sections. Journal of Constructional Steel Research, 2002, 58(11): 1407–1430
68 Poonaya S, Teeboonma U, Thinvongpituk C. Plastic collapse analysis of thin-walled circular tubes subjected to bending. Thin-walled Structures, 2009, 47(6–7): 637–645
69 Elchalakani M, Zhao X L, Grzebieta R H. Plastic mechanism analysis of circular tubes under pure bending. International Journal of Mechanical Sciences, 2002, 44(6): 1117–1143
70 Al-Thairy H, Wang Y C. An assessment of the current Eurocode 1 design methods for building structure steel columns under vehicle impact. Journal of Constructional Steel Research, 2013, 88: 164–171
71 Al-Thairy H, Wang Y C. A simplified analytical method for predicting the critical velocity of vehicle impact on steel columns. Journal of Constructional Steel Research, 2014, 92: 136–149
72 Wegener R B, Martin J B. Predictions of permanent deformation of impulsively loaded simply supported square tube steel beams. International Journal of Mechanical Sciences, 1985, 27(1–2): 55–69
73 Jama H H, Bambach M R, Nurick G N, Grzebieta R H, Zhao X L. Numerical modelling of square tubular steel beams subjected to transverse blast loads. Thin-walled Structures, 2009, 47(12): 1523–1534
74 Jama H H, Nurick G N, Bambach M R, Grzebieta R H, Zhao X L. Steel square hollow sections subjected to transverse blast loads. Thin-walled Structures, 2012, 53: 109–122
75 Bambach M R. Design of metal hollow section tubular columns subjected to transverse blast loads. Thin-walled Structures, 2013, 68: 92–105
76 Karagiozova D, Yu T X, Lu G. Transverse blast loading of hollow beams with square cross-sections. Thin-walled Structures, 2013, 62: 169–178
89 Clubley S K. Steel sections subject to a long-duration blast. Structures and Buildings. Institution of Civil Engineers, 2012, 166(SB6): 273–281
90 Zhai X, Wang Y, Huang M. Performance and protection approach of single-layer reticulated dome subjected to blast loading. Thin-walled Structures, 2013, 73: 57–67
91 Ding Y, Wang M, Li Z X, Hao H. Damage evaluation of the steel tubular column subjected to explosion and post-explosion fire condition. Engineering Structures, 2013, 55: 44–55
92 Walker M, Ritchie C, Spiller K, Seica M V, Packer J A, Eytan A. Challenges and outcome of fullscale blast experimentation on structural steel members and glass elements. In: Proceedings of the 15th International Symposium on Interaction of the Effects of Munitions with Structures, Potsdam, Germany, Paper No. 126, 2013
93 Ritchie C, Packer J A, Seica M, Yankelevsky D. Field blast testing and SDOF analysis of unfilled and concrete-filled RHS members. In: Proceedings of the 23rd. International Symposium on Military Aspects of Blast and Shock, Oxford, United Kingdom, Paper No. 31, 2014
94 Ritchie C, Packer J A, Seica M, Zhao X L. Field blast testing and FE modelling of concrete-filled RHS members. In: Proceedings of the 3rd. International Conference on Protective Structures. Newcastle, Australia, 478–485, 2015
95 Ritchie C, Packer J A, Seica M, Zhao X L. Field blast testing and FE modelling of RHS members. In: Proceedings of the 15th International Symposium on Tubular Structures. Rio de Janeiro, Brazil, 211–218, 2015
96 Ritchie C, Packer J A, Seica M, Zhao X L. Field blast testing of concrete-filled double-skin tube members. In: Proceedings of the 4th International Conference on Protective Structures. Beijing, China, 546–555, 2016
97 Theobald M D, Nurick G N. Experimental and numerical analysis of tube-core claddings under blast loads. International Journal of Impact Engineering, 2010, 37(3): 333–348
98 Shen J, Lu G, Zhao L, Zhang Q. Short sandwich tubes subjected to internal explosive loading. Engineering Structures, 2013, 55: 56–65
99 Langdon G S, Ozinsky A, Chung Kim Yuen S. The response of partially confined right circular stainless steel cylinders to internal air-blast loading. International Journal of Impact Engineering, 2014, 73: 1–14
100 Hyde D. Microcomputer programs CONWEP and FUNPRO, applications of TM 5–855–1.  Fundamentals of Protective Design for Conventional Weapons. (User’s Guide). U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS, USA, 1988
101 USACE. Single-degree-of-freedom blast effects design spreadsheets (SBEDS). PDC-TR 05–01. U.S. Army Corps of Engineers, USA, 2005
102 LSTC. LS-DYNA Theory Manual. Livermore Software Technology Corporation, Livermore, CA, USA, 2014
103 Simulia. ABAQUS Theory Manual. Providence, RI, USA, 2014
104 ANSYS. ANSYS Autodyn user’s guide. Canonsburg, PA, USA, 2015
[1] Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI. Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1561-1572.
[2] Suman HAZARI, Sima GHOSH, Richi Prasad SHARMA. New pseudo-dynamic analysis of two-layered cohesive-friction soil slope and its numerical validation[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1492-1508.
[3] El Houcine MOURID, Said MAMOURI, Adnan IBRAHIMBEGOVIC. Progressive collapse of 2D reinforced concrete structures under sudden column removal[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1387-1402.
[4] Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1349-1358.
[5] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[6] Wengang ZHANG, Libin TANG, Hongrui LI, Lin WANG, Longfei CHENG, Tingqiang ZHOU, Xiang CHEN. Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1247-1261.
[7] Peng DENG, Boyi YANG, Xiulong CHEN, Yan LIU. Experimental and numerical investigations of the compressive behavior of carbon fiber-reinforced polymer-strengthened tubular steel T-joints[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1215-1231.
[8] Alireza GHAVIDEL, Mohsen RASHKI, Hamed GHOHANI ARAB, Mehdi AZHDARY MOGHADDAM. Reliability mesh convergence analysis by introducing expanded control variates[J]. Front. Struct. Civ. Eng., 2020, 14(4): 1012-1023.
[9] Masoud RANJBARNIA, Milad ZAHERI, Daniel DIAS. Three-dimensional finite difference analysis of shallow sprayed concrete tunnels crossing a reverse fault or a normal fault: A parametric study[J]. Front. Struct. Civ. Eng., 2020, 14(4): 998-1011.
[10] Chunfeng ZHAO, Xin YE, Avinash GAUTAM, Xin LU, Y. L. MO. Simplified theoretical analysis and numerical study on the dynamic behavior of FCP under blast loads[J]. Front. Struct. Civ. Eng., 2020, 14(4): 983-997.
[11] Yi RUI, Mei YIN. Finite element modeling of thermo-active diaphragm walls[J]. Front. Struct. Civ. Eng., 2020, 14(3): 646-663.
[12] Masoud ABEDINI, Azrul A. MUTALIB, Chunwei ZHANG, Javad MEHRMASHHADI, Sudharshan Naidu RAMAN, Roozbeh ALIPOUR, Tohid MOMENI, Mohamed H. MUSSA. Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 532-553.
[13] Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR. Geotechnical forensic investigation of a slope failure on silty clay soil—A case study[J]. Front. Struct. Civ. Eng., 2020, 14(2): 501-517.
[14] Farhoud KALATEH, Farideh HOSSEINEJAD. Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method[J]. Front. Struct. Civ. Eng., 2020, 14(2): 387-410.
[15] Chahmi OUCIF, Luthfi Muhammad MAULUDIN, Farid Abed. Ballistic behavior of plain and reinforced concrete slabs under high velocity impact[J]. Front. Struct. Civ. Eng., 2020, 14(2): 299-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed