Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (2) : 299-310    https://doi.org/10.1007/s11709-019-0588-5
RESEARCH ARTICLE
Ballistic behavior of plain and reinforced concrete slabs under high velocity impact
Chahmi OUCIF1(), Luthfi Muhammad MAULUDIN1,2, Farid Abed3
1. Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar D-99423, Germany
2. Teknik Sipil, Politeknik Negeri Bandung, Gegerkalong Hilir Ds.Ciwaruga, Bandung 40012, Indonesia
3. Department of Civil Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
 Download: PDF(1581 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work presents a numerical simulation of ballistic penetration and high velocity impact behavior of plain and reinforced concrete slabs. In this paper, we focus on the comparison of the performance of the plain and reinforced concrete slabs of unconfined compressive strength 41 MPa under ballistic impact. The concrete slab has dimensions of 675 mm × 675 mm × 200 mm, and is meshed with 8-node hexahedron solid elements in the impact and outer zones. The ogive-nosed projectile is considered as rigid element that has a mass of 0.386 kg and a length of 152 mm. The applied velocities vary between 540 and 731 m/s. 6 mm of steel reinforcement bars were used in the reinforced concrete slabs. The constitutive material modeling of the concrete and steel reinforcement bars was performed using the Johnson-Holmquist-2 damage and the Johnson-Cook plasticity material models, respectively. The analysis was conducted using the commercial finite element package Abaqus/Explicit. Damage diameters and residual velocities obtained by the numerical model were compared with the experimental results and effect of steel reinforcement and projectile diameter were studies. The validation showed good agreement between the numerical and experimental results. The added steel reinforcements to the concrete samples were found efficient in terms of ballistic resistance comparing to the plain concrete sample.

Keywords Johnson-Holmquist-2      Johnson-Cook      reinforced concrete      damage      impact loads     
Corresponding Author(s): Chahmi OUCIF   
Just Accepted Date: 30 December 2019   Online First Date: 31 March 2020    Issue Date: 08 May 2020
 Cite this article:   
Chahmi OUCIF,Luthfi Muhammad MAULUDIN,Farid Abed. Ballistic behavior of plain and reinforced concrete slabs under high velocity impact[J]. Front. Struct. Civ. Eng., 2020, 14(2): 299-310.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0588-5
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I2/299
Fig.1  Pressure-volumetric strain relationship of the JH-2 model.
parameters value
R (kg/m3) 2440
G (GPa) 14.86
v 0.15
A 0.3
B 2
n 0,75
C 0.007
m 0.61
ε ˙0 1
Smax 7
T (GPa) 0.004
εf,minpl 0.001
εf,maxpl 1
PHEL(MPa) 33.43
D1 0.04
D2 1
K1 (GPa) 17.12
K2 (GPa) -171
K3 (GPa) 208
HEL (MPa) 71.12
fc 41
Tab.1  Material parameters of the concrete material
parameters value
r (kg/m3) 2×1011
v 0.33
A 490
B 807
n 0.73
m 0.94
melting temperature (Kelvin) 1800
transition temperature (Kelvin) 293
d1 0.0705
d2 1.732
d3 -0.54
d4 -0.015
d5 0
strain rate (S-1) 0.0005
Tab.2  Material parameters of the steel reinforcement [80]
Fig.2  (a) Reinforced concrete slab and (b) projectile geometries.
Fig.3  FE model of steel reinforcement configuration.
Fig.4  Mesh convergence study with various mesh sizes.
Fig.5  E meshing of (a) total geometry, (b) quarter of geometry, (c) impact location details, (d) projectile, and (e) steel reinforcement.
Fig.6  Calculation of equivalent diameter of front and back craters.
Fig.7  Experimental and numerical comparison of front and back damages at impact velocity of 641 m/s.
Fig.8  Comparison of numerical and experimental residual velocities.
Fig.9  Configurations of longitudinal and transverse reinforcement steels of (a) RCS1, (b) RCS2, (c) RCS3, (d) SRCS samples.
Fig.10  Residual velocity and equivalent damage diameter of plain, reinforced and additionally reinforced concrete samples in (a) front surface and (b) back surface.
sample velocity front surface back surface
V0
(m/s)
V
(m/s)
d1
(mm)
d2
(mm)
d3
(mm)
D4
(mm)
dm
(mm)
d1
(mm)
d2
(mm)
d3
(mm)
D4
(mm)
dm
(mm)
PCS 540 308.71 287.57 298.16 280.07 285.40 287.8 321.96 337.23 327.81 332.16 329.79
597 382.49 305.18 304.32 280.54 284.23 293.57 314.06 313.22 309.31 320.73 314.33
641 439.15 301.66 312.22 295.64 299.03 302.14 323.87 318.45 324.51 313.63 320.12
731 547.86 302.56 302.59 308.85 315.59 307.4 343.16 334.49 334 327 334.66
NRCS 540 307.24 284.8 281.4 235.5 238.2 259.98 318.4 306.97 278.93 278.75 295.76
597 383.10 292.82 296.36 238.63 232.94 265.18 305.17 289.29 285 300.43 294.97
641 439.36 299.95 301.71 246.89 244.04 273.15 298.14 295.76 276.25 270.19 285.09
731 545.90 304.32 302.54 225 238.35 267.55 293.7 287.57 274.82 289.95 286.51
RCS1 540 293.5 246.34 248.85 232.96 231.15 239.83 284.04 305.34 287.13 280.05 289.14
597 375.21 262.97 262.92 239.89 221.9 246.92 288.37 302.64 298.19 308.24 299.36
641 430.36 277 269.96 267.97 265.35 270.07 295.51 290.21 300.43 302.85 297.25
731 537.94 277 280.53 277.10 286.72 280.34 320.4 305.18 302.85 297.48 306.48
RCS2 540 293.5 246.34 245.31 233.6 224.62 237.46 284.96 301.66 284.95 294.79 291.59
597 375.21 2262.96 260.37 238.36 219.31 242.75 285.74 297.22 303.22 303.91 297.52
641 430.36 273.48 269.94 238.45 262.47 261.08 295.51 288.52 291.14 292.81 291.99
731 537.94 277 277 276.68 281.37 278.01 309.57 303.45 294.89 297.53 301.36
RCS3 540 297.08 241.78 246.32 190.44 204.78 220.83 282.39 287.57 274.71 281.21 281.47
597 374.44 236.82 237.23 216.49 213.77 226.08 284.98 284.05 268.82 262.76 275.15
641 430.62 236.82 235.79 219.2 213.77 226.4 301.69 298.14 257.67 257.37 278.72
731 536.75 252.35 253.35 221.62 230.04 239.34 300.78 301.66 260.56 265.21 282.05
SRCS 540 301.40 283.25 282.51 211.68 213.88 247.83 304.35 302.62 243.60 246.26 274.21
597 378.6 290.31 290.32 232.89 222.25 258.94 322.02 316.66 265.2 268.14 293.01
641 433.33 295.61 292.10 214.23 208.58 252.63 304.49 302.61 262.56 263.43 283.27
731 542.05 300 298.24 221.98 224.71 261.23 300 299.12 281.74 278.66 289.88
Tab.3  Residual velocity and equivalent damage diameter of plain, reinforced and additionally reinforced concrete samples
Fig.11  Various projectile diameters.
Fig.12  Ballistic resistance of reinforced concrete sample with different projectile diameters.
1 A Plotzitza, T Rabczuk, J Eibl. Techniques for numerical simulations of concrete slabs for demolishing by blasting. Journal of Engineering Mechanics, 2007, 133(5): 523–533
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(523)
2 C Oucif , L M Mauludin . Numerical modeling of high velocity impact applied to reinforced concrete panel. Underground Space, 2018, 4(1): 1–9
3 T Rabczuk, J Akkermann, J Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6):1327–1354
4 T Rabczuk, T Belytschko. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
5 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
6 C Oucif, K Ouzaa, V Stoian, C A Dăescu. Numerical modeling of reinforced concrete strengthened columns under cyclic loading. Arabian Journal for Science and Engineering, 2017, 42(9): 3933–3944
https://doi.org/10.1007/s13369-017-2533-z
7 C Oucif, K Ouzaa, L M Mauludin. Cyclic and monotonic behavior of strengthened and unstrengthened square reinforced concrete columns. Journal of Applied and Computational Mechanics, 2019, 5(3): 517–525
8 T Rabczuk, J Eibl. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
https://doi.org/10.1016/j.ijimpeng.2005.02.008
9 H A Kalameh, A Karamali, C Anitescu, T Rabczuk. High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method. Frontiers of Structural and Civil Engineering, 2012, 6(2): 101–110
https://doi.org/10.1007/s11709-012-0160-z
10 C Diyaroglu, E Oterkus, E Madenci, T Rabczuk, A Siddiq. Peridynamic modeling of composite laminates under explosive loading. Composite Structures, 2016, 144: 14–23
https://doi.org/10.1016/j.compstruct.2016.02.018
11 F Hu, H Wu, Q Fang, J C Liu, B Liang, X Z Kong. Impact performance of explosively formed projectile (EFP) into concrete targets. International Journal of Impact Engineering, 2017, 109: 150–166
https://doi.org/10.1016/j.ijimpeng.2017.06.010
12 T Rabczuk, J Eibl. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444
https://doi.org/10.1002/nme.617
13 T Rabczuk, J Eibl, L Stempniewski. Numerical analysis of high speed concrete fragmentation using a meshfree lagrangian method. Engineering Fracture Mechanics, 2004, 71(4–6): 547–556
https://doi.org/10.1016/S0013-7944(03)00032-8
14 A B Groeneveld, T M Ahlborn, C K Crane, C A Burchfield, E N. Landis Dynamic strength and ductility of ultra-high performance concrete with flow-induced fiber alignment. International Journal of Impact Engineering, 2018, 111: 37–45
https://doi.org/10.1016/j.ijimpeng.2017.08.009
15 D Lu, G Wang, X Du, Y Wang. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete. International Journal of Impact Engineering, 2017, 103: 124–137
https://doi.org/10.1016/j.ijimpeng.2017.01.011
16 S J Hanchak, M J Forrestal, E R Young, J Q Ehrgott. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. International Journal of Impact Engineering, 1992, 12(1): 1–7
https://doi.org/10.1016/0734-743X(92)90282-X
17 T Borvik, M Langseth, O S Hopperstad, M A Polanco-Loria. Ballistic perforation resistance of high performance concrete slabs with different unconfined compressive strengths. WIT Transactions on the Built Environment, 2002, 59: 273–282
18 J Cai, J Ye, Y Wang, Q Chen. Numerical study on dynamic response of reinforced concrete columns under low-speed horizontal impact loading. Procedia Engineering, 2017, 210: 334–340
https://doi.org/10.1016/j.proeng.2017.11.085
19 J Li, C Wu, H Hao, Y Su, Z X Li. A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads. International Journal of Impact Engineering, 2017, 110: 242–254
https://doi.org/10.1016/j.ijimpeng.2017.01.016
20 J Liu, C Wu, J Li, Y Su, R Shao, Z Liu, G Chen. Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration. International Journal of Impact Engineering, 2017, 109: 131–149
https://doi.org/10.1016/j.ijimpeng.2017.06.006
21 P Isaac, A Darby, T Ibell, M Evernden. Experimental investigation into the force propagation velocity due to hard impacts on reinforced concrete members. International Journal of Impact Engineering, 2017, 100: 131–138
https://doi.org/10.1016/j.ijimpeng.2016.09.005
22 H Othman, H Marzouk. An experimental investigation on the effect of steel reinforcement on impact response of reinforced concrete plates. International Journal of Impact Engineering, 2016, 88: 12–21
https://doi.org/10.1016/j.ijimpeng.2015.08.015
23 D K Thai, S E Kim, T Q Bui. Modified empirical formulas for predicting the thickness of RC panels under impact loading. Construction & Building Materials, 2018, 169: 261–275
https://doi.org/10.1016/j.conbuildmat.2018.02.211
24 J Feng, M Song, Q He, W Sun, L Wang, K Luo. Numerical study on the hard projectile perforation on RC panels with ldpm. Construction & Building Materials, 2018, 183: 58–74
https://doi.org/10.1016/j.conbuildmat.2018.06.020
25 D K Thai, S E Kim, 0. Numerical investigation of the damage of RC members subjected to blast loading. Engineering Failure Analysis, 2018, 92: 350–367
https://doi.org/10.1016/j.engfailanal.2018.06.001
26 D B Zhao, W J Yi, S K Kunnath. Numerical simulation and shear resistance of reinforced concrete beams under impact. Engineering Structures, 2018, 166: 387–401
https://doi.org/10.1016/j.engstruct.2018.03.072
27 X Kong, Q Fang, H Wu, Y Peng. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model. International Journal of Impact Engineering, 2016, 95: 61–71
https://doi.org/10.1016/j.ijimpeng.2016.04.014
28 X Kong, Q Fang, Q M Li, H Wu, J E Crawford. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact. International Journal of Impact Engineering, 2017, 108: 217–228
https://doi.org/10.1016/j.ijimpeng.2017.02.016
29 X Kong, Q Fang, L Chen, H Wu. A new material model for concrete subjected to intense dynamic loadings. International Journal of Impact Engineering, 2018, 120: 60–78
https://doi.org/10.1016/j.ijimpeng.2018.05.006
30 P Navas, R C Yu, B Li, G Ruiz. Modeling the dynamic fracture in concrete: An eigensoftening meshfree approach. International Journal of Impact Engineering, 2018, 113: 9–20
https://doi.org/10.1016/j.ijimpeng.2017.11.004
31 T Rabczuk, T Belytschko. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582
https://doi.org/10.1002/nme.1326
32 T Rabczuk, P M A Areias, T Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
33 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
34 T Rabczuk, S PA Bordas, H Askes. Meshfree Discretization Methods for Solid Mechanics. New Jersey: John Wiley & Sons, 2010
35 G Zi, T Rabczuk, W Wall. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382
https://doi.org/10.1007/s00466-006-0115-0
36 S Bordas, T Rabczuk, G Zi. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960
https://doi.org/10.1016/j.engfracmech.2007.05.010
37 F Amiri, D Millán, Y Shen, T Rabczuk, M Arroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
38 F Amiri, C Anitescu, M Arroyo, S P A Bordas, T. Rabczuk XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
39 Z J Fu, Q Xi, W Chen, A H D Cheng. A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Computers & Mathematics with Applications, 2018, 76(4): 760–773
40 Z Fu, W Chen, P Wen, C Zhang. Singular boundary method for wave propagation analysis in periodic structures. Journal of Sound and Vibration, 2018, 425: 170–188
https://doi.org/10.1016/j.jsv.2018.04.005
41 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
42 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
43 H Ren, X Zhuang, T Rabczuk. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
44 H Ren, X Zhuang, Y Cai, T Rabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
45 P Areias, J Reinoso, P P Camanho, J César de Sá, T Rabczuk. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2018, 189: 339–360
https://doi.org/10.1016/j.engfracmech.2017.11.017
46 P Areias, T Rabczuk. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41
https://doi.org/10.1016/j.finel.2017.05.001
47 P Areias, M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
48 S S Ghorashi, N Valizadeh, S Mohammadi, T Rabczuk. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
49 P Areias, T Rabczuk, P P Camanho. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
50 P Areias, T Rabczuk, D Dias-da Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
51 P Areias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
52 T Chau-Dinh, G Zi, P S Lee, T Rabczuk, J H Song. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92– 93: 242–256
https://doi.org/10.1016/j.compstruc.2011.10.021
53 T Rabczuk, S Bordas, G Zi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
54 T Rabczuk, R Gracie, J H Song, T Belytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
55 L M Mauludin, C Oucif. Interaction between matrix crack and circular capsule under uniaxial tension in encapsulation-based self-healing concrete. Underground Space, 2018, 3(3): 181–189
56 L M Mauludin, C Oucif. The effects of interfacial strength on fractured microcapsule. Frontiers of Structural and Civil Engineering, 2019, 13(2): 353–363
57 C Oucif, G Z Voyiadjis, P I Kattan, T Rabczuk. Nonlinear superhealing and contribution to the design of a new strengthening theory. Journal of Engineering Mechanics, 2018, 144(7): 04018055
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001484
58 C Oucif, G Z Voyiadjis, T. Rabczuk Modeling of damage-healing and nonlinear self-healing concrete behavior: Application to coupled and uncoupled self-healing mechanisms. Theoretical and Applied Fracture Mechanics, 2018, 96: 216–230
https://doi.org/10.1016/j.tafmec.2018.04.010
59 C Oucif, G Z Voyiadjis, P I Kattan, T. Rabczuk Investigation of the super healing theory in continuum damage and healing mechanics. International Journal of Damage Mechanics, 2018, 28(6): 896–917
60 M A Msekh, N H Cuong, G Zi, P Areias, X Zhuang, T Rabczuk. Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 2018, 188: 287–299
https://doi.org/10.1016/j.engfracmech.2017.08.002
61 J Amani, E Oterkus, P Areias, G Zi, T Nguyen-Thoi, T Rabczuk. A non-ordinary state-based peridynamics formulation for thermoplastic fracture. International Journal of Impact Engineering, 2016, 87: 83–94
https://doi.org/10.1016/j.ijimpeng.2015.06.019
62 Y L Gui, H H Bui, J Kodikara, Q B Zhang, J Zhao, T Rabczuk. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model. International Journal of Impact Engineering, 2016, 87: 146–155
https://doi.org/10.1016/j.ijimpeng.2015.04.010
63 H Talebi, M Silani, T Rabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
64 H Talebi, M Silani, S P A Bordas, P Kerfriden, T Rabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
65 P R Budarapu, R Gracie, S P A Bordas, T Rabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
66 P R Budarapu, R Gracie, S W Yang, X Zhuang, T Rabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
67 S Zhou, X Zhuang, H Zhu, T Rabczuk. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192
https://doi.org/10.1016/j.tafmec.2018.04.011
68 S Zhou, X Zhuang, T Rabczuk. A phase-field modeling approach of fracture propagation in poroelastic media. Engineering Geology, 2018, 240: 189–203
https://doi.org/10.1016/j.enggeo.2018.04.008
69 S Zhou, T Rabczuk, X Zhuang. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, 122: 31–49
https://doi.org/10.1016/j.advengsoft.2018.03.012
70 S W Zhou, C C Xia. Propagation and coalescence of quasistatic cracks in Brazilian disks: An insight from a phase field model. Acta Geotechnica, 2018, 14: 1195–1214
71 P Areias, T Rabczuk, M A Msekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
72 H Badnava, E Etemadi, M. Msekh A phase field model for rate-dependent ductile fracture. Metals, 2017, 7(5): 180
https://doi.org/10.3390/met7050180
73 G Liu, Q Li, M A Msekh, Z. Zuo Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Computational Materials Science, 2016, 121: 35–47
https://doi.org/10.1016/j.commatsci.2016.04.009
74 M A Msekh, M Silani, M Jamshidian, P Areias, X Zhuang, G Zi, P He, T Rabczuk. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114
https://doi.org/10.1016/j.compositesb.2016.02.022
75 M A Msekh, J M Sargado, M Jamshidian, P M Areias, T. Rabczuk Abaqus implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484
https://doi.org/10.1016/j.commatsci.2014.05.071
76 K M Hamdia, M A Msekh, M Silani, N Vu-Bac, X Zhuang, T Nguyen-Thoi, T Rabczuk. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
77 G R Johnson, T J Holmquist. A Computational Constitutive Model for Brittle Materials Subjected to Large Strains, High Strain Rates and High Pressures. New York: Marcel Dekker Inc., 1992
78 Z Rosenberg. On the relation between the hugoniot elastic limit and the yield strength of brittle materials. Journal of Applied Physics, 1993, 74(1): 752–753
https://doi.org/10.1063/1.355247
79 G R Johnson, W H Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31–48
https://doi.org/10.1016/0013-7944(85)90052-9
80 T B Ãrvik, O S Hopperstad, T Berstad, M Langseth. Numerical simulation of plugging failure in ballistic penetration. International Journal of Solids and Structures, 2001, 38(34): 6241–6264
81 H Wu, Q Fang, Y Peng, Z M Gong, X Z Kong. Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner. International Journal of Impact Engineering, 2015, 76: 232–250
https://doi.org/10.1016/j.ijimpeng.2014.10.010
[1] Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU. An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1531-1544.
[2] Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU. A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1476-1491.
[3] Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE. Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1349-1358.
[4] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[5] Peng DENG, Boyi YANG, Xiulong CHEN, Yan LIU. Experimental and numerical investigations of the compressive behavior of carbon fiber-reinforced polymer-strengthened tubular steel T-joints[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1215-1231.
[6] Luisa PANI, Flavio STOCHINO. Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1196-1214.
[7] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[8] Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI. Multiple damage detection in complex bridges based on strain energy extracted from single point measurement[J]. Front. Struct. Civ. Eng., 2020, 14(3): 722-730.
[9] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[10] Dan V. BOMPA, Ahmed Y. ELGHAZOULI. Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 331-356.
[11] Jordan CARTER, Aikaterini S. GENIKOMSOU. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1520-1530.
[12] Ahmadreza RAMEZANI, Mohammad Reza ESFAHANI. Effect of fiber hybridization on energy absorption and synergy in concrete[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1338-1349.
[13] Sheng PENG, Chengxiang XU, Xiaoqiang LIU. Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1324-1337.
[14] Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR. Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1289-1300.
[15] Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH. Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1251-1270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed