Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (6) : 1480-1493    https://doi.org/10.1007/s11709-021-0776-y
RESEARCH ARTICLE
Upper bound solution to seismic active earth pressure of submerged backfill subjected to partial drainage
Zhengqiang ZENG1, Shengzhi WU2, Cheng LYU3
1. State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
2. School of Civil Engineering, Shandong Jianzhu University, Jinan 250000, China
3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(21266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In waterfront geotechnical engineering, seismic and drainage conditions must be considered in the design of retaining structures. This paper proposes a general analytical method to evaluate the seismic active earth pressure on a retaining wall with backfill subjected to partial steady seepage flow under seismic conditions. The method comprises the following steps: i) determination of the total head, ii) upper bound solution of seismic active earth thrust, and iii) deduction for the earth pressure distribution. The determination of total head h(x,z) relies on the Fourier series expansions, and the expressions of the seismic active earth thrust and pressure are derived by using the upper bound theorem. Parametric studies reveal that insufficient drainage and earthquakes are crucial factors that cause unfavorable earth pressure. The numerical results confirm the validity of the total head distribution. Comparisons indicate that the proposed method is consistent with other relevant existing methods in terms of predicting seismic active earth pressure. The method can be applied to the seismic design of waterfront retaining walls.

Keywords seismic active earth pressure      partial seepage flow      pore pressure      anisotropy      upper bound theorem     
Corresponding Author(s): Cheng LYU   
Just Accepted Date: 29 October 2021   Online First Date: 01 December 2021    Issue Date: 21 January 2022
 Cite this article:   
Zhengqiang ZENG,Shengzhi WU,Cheng LYU. Upper bound solution to seismic active earth pressure of submerged backfill subjected to partial drainage[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1480-1493.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0776-y
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I6/1480
Fig.1  Vertical wall supporting a backfill subjected to complete seepage flow.
Fig.2  Vertical wall supporting a backfill subjected to partial seepage flow: (a) partial seepage flow and the phreatic surface (based on the impervious layer); (b) decomposed total seepage field and hydrostatic field.
Fig.3  FDM model: (a) diagrammatic sketch and three hypothetical failure surfaces; (b) contours of grid point pore pressure in the numerical model when d = 0.4 m.
Fig.4  Comparison of results between proposed analytical method and FDM when d = 0, 0.4, and 0.8 m, respectively.
Fig.5  Distribution of total head in planar seepage state: (a) differing partial drainage condition d; (b) differing anisotropy index ξ.
Fig.6  Present active failure mechanism in limit analysis accounting for seismic forces.
φ δ/φ kh kv proposed method complete drainage(d = 0) [16] undrained(d = 5 m)
d = 1 m d = 2 m d = 3 m d = 4 m
25° 1/3 0.0 0.00 124.6 137.8 151.0 160.9 114.6 164.5
0.1 0.00 161.9 176.3 188.8 197.0 149.6 199.8
0.1 0.05 157.6 172.2 184.7 192.7 144.8 195.4
0.1 0.10 153.7 168.6 181.1 188.9 140.4 191.5
1/2 0.0 0.00 122.9 136.1 149.0 158.4 112.8 161.8
0.1 0.00 162.4 177.1 189.6 197.7 149.6 200.4
0.1 0.05 158.4 173.4 186.0 193.9 145.1 196.6
0.1 0.10 155.0 170.4 182.9 190.7 141.0 193.4
2/3 0.0 0.00 122.1 135.4 148.2 157.3 111.9 160.5
0.1 0.00 164.1 179.3 192.0 200.0 150.7 202.7
0.1 0.05 160.5 176.0 188.8 196.8 146.5 199.4
0.1 0.10 157.6 173.5 186.4 194.3 142.8 196.9
30° 1/3 0.0 0.00 109.1 124.3 139.6 151.5 98.1 155.9
0.1 0.00 144.4 160.8 175.8 185.9 131.1 189.4
0.1 0.05 140.5 157.2 172.2 182.1 126.8 185.5
0.1 0.10 136.9 154.0 168.9 178.7 122.7 182.0
1/2 0.0 0.00 108.1 123.3 138.5 149.8 96.9 153.9
0.1 0.00 145.5 162.4 177.6 187.6 131.5 190.9
0.1 0.05 141.9 159.2 174.4 184.2 127.5 187.6
0.1 0.10 138.8 156.5 171.7 181.4 123.7 184.7
2/3 0.0 0.00 108.2 123.6 138.8 149.9 96.7 153.8
0.1 0.00 148.2 165.9 181.4 191.5 133.4 194.9
0.1 0.05 145.0 163.1 178.7 188.7 129.6 192.1
0.1 0.10 142.2 160.8 176.6 186.5 126.1 189.9
35° 1/3 0.0 0.00 95.5 112.4 129.9 143.7 83.7 149.0
0.1 0.00 129.3 147.7 165.0 177.1 115.1 181.3
0.1 0.05 125.9 144.5 161.9 173.8 111.3 177.9
0.1 0.10 122.7 141.7 159.1 170.8 107.6 174.8
1/2 0.0 0.00 95.3 112.4 129.9 143.2 83.1 148.1
0.1 0.00 131.3 150.4 168.2 180.2 116.2 184.3
0.1 0.05 128.1 147.6 165.5 177.4 112.6 181.4
0.1 0.10 125.3 145.3 163.2 175.0 109.2 179.0
2/3 0.0 0.00 96.3 113.9 131.6 144.8 83.7 149.6
0.1 0.00 135.2 155.5 174.1 186.4 119.1 190.5
0.1 0.05 132.4 153.2 171.9 184.1 115.6 188.3
0.1 0.10 129.9 151.3 170.3 182.5 112.4 186.6
Tab.1  Variation of seismic active earth thrust with drainage conditions (kN·m)
φ δ/φ presented method reference
d/H = 0.2 d/H = 0.4 d/H = 0.6 d/H = 0.8 undrained (d/H = 1) fw = 0 [16] (d = 0) [3] [1,35,41]
20° 0 0.743 0.791 0.832 0.860 0.869 0.569 0.701 0.567 0.573
1/2 0.732 0.782 0.822 0.846 0.855 0.532 0.686 0.522 0.536
1 0.757 0.810 0.852 0.877 0.886 0.520 0.704 0.491 0.524
30° 0 0.588 0.653 0.715 0.760 0.776 0.397 0.538 0.395 0.400
1/2 0.582 0.650 0.710 0.750 0.764 0.368 0.526 0.353 0.371
1 0.637 0.717 0.786 0.829 0.844 0.372 0.568 0.325 0.376
40° 0 0.466 0.544 0.623 0.686 0.710 0.268 0.411 0.266 0.271
1/2 0.476 0.561 0.643 0.700 0.720 0.253 0.412 0.235 0.255
1 0.583 0.704 0.816 0.889 0.913 0.275 0.491 0.211 0.278
Tab.2  Comparisons of Kas with other theoretical results
Fig.7  Variations of θcr and Kas with drainage efficiency d/H for different soils: (a) θcr?d/H; (b) Kas?d/H.
Fig.8  Variations of θcr and Kas with internal friction angle under different seismic coefficients: (a) θcr?φ; (b) Kas?φ.
Fig.9  Variations of θcr and Kas with internal friction angle under different wall-soil friction conditions and drainage rate: (a) θcr?φ; (b) Kas?φ.
Fig.10  Partial seismic active earth thrust evaluation. (a) Case I; (b) Case II.
Fig.11  Variation of earth pressure distribution with drainage efficiency.
Fig.12  Seismic active earth pressure coefficient using different methods.
1 D Choudhury, S S Nimbalkar. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall. Geotechnical and Geological Engineering, 2006, 24( 5): 1103– 1113
https://doi.org/10.1007/s10706-005-1134-x
2 D Choudhury, A D Katdare, A Pain. New method to compute seismic active earth pressure on retaining wall considering seismic waves. Geotechnical and Geological Engineering, 2014, 32( 2): 391– 402
https://doi.org/10.1007/s10706-013-9721-8
3 K Krabbenhoft. Static and seismic earth pressure coefficients for vertical walls with horizontal backfill. Soil Dynamics and Earthquake Engineering, 2018, 104 : 403– 407
https://doi.org/10.1016/j.soildyn.2017.11.011
4 S Kolathayar, P Ghosh. Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach. Computers and Geotechnics, 2009, 36( 7): 1229– 1236
https://doi.org/10.1016/j.compgeo.2009.05.015
5 S K Shukla, S K Gupta, N Sivakugan. Active earth pressure on retaining wall for cϕ soil backfill under seismic loading condition. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135( 5): 690– 696
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000003
6 A Scotto di Santolo, A Evangelista. Dynamic active earth pressure on cantilever retaining walls. Computers and Geotechnics, 2011, 38( 8): 1041– 1051
https://doi.org/10.1016/j.compgeo.2011.07.015
7 S Y Xu, A Shamsabadi, E Taciroglu. Evaluation of active and passive seismic earth pressures considering internal friction and cohesion. Soil Dynamics and Earthquake Engineering, 2015, 70 : 30– 47
https://doi.org/10.1016/j.soildyn.2014.11.004
8 C Vrettos, D E Beskos, T Triantafyllidis. Seismic pressures on rigid cantilever walls retaining elastic continuously non-homogeneous soil: An exact solution. Soil Dynamics and Earthquake Engineering, 2016, 82 : 142– 153
https://doi.org/10.1016/j.soildyn.2015.12.006
9 S J Brandenberg, G Mylonakis, J P Stewart. Approximate solution for seismic earth pressures on rigid walls retaining inhomogeneous elastic soil. Soil Dynamics and Earthquake Engineering, 2017, 97 : 468– 477
https://doi.org/10.1016/j.soildyn.2017.03.028
10 S Okabe. General theory of earth pressure and seismic stability of retaining wall and dam. Journal of Japan Society of Civil Engineers, 1924, 10(6): 1924−1323 (in Japanese)
11 N Mononobe, H Matsuo. On the determination of earth pressure during earthquakes. Proceedings of the World Engineering Congress, 1929, 9: 177– 185 (in Japanese)
12 R M Ebeling, E E Morrison. The Seismic Design of Waterfront Retaining Structures. US Army Technical Report ITL-92-11 and US Navy Technical Report NCEL TR-9391993. 1993
13 M Iskander, Z Chen, M Omidvar, I Guzman, O Elsherif. Active static and seismic earth pressure for cφ soils. Soil and Foundation, 2013, 53( 5): 639– 652
https://doi.org/10.1016/j.sandf.2013.08.003
14 D Choudhury, S Nimbalkar. Seismic passive resistance by pseudo-dynamic method. Geotechnique, 2005, 55( 9): 699– 702
https://doi.org/10.1680/geot.2005.55.9.699
15 P Ghosh. Seismic active earth pressure behind a nonvertical retaining wall using pseudo-dynamic analysis. Canadian Geotechnical Journal, 2008, 45( 1): 117– 123
https://doi.org/10.1139/T07-071
16 J J Wang, H P Zhang, M W Liu, Y Y Chen. Seismic passive earth pressure with seepage for cohesionless soil. Marine Georesources and Geotechnology, 2012, 30( 1): 86– 101
https://doi.org/10.1080/1064119X.2011.586012
17 J J Wang, H P Zhang, H J Chai, J G Zhu. Seismic passive resistance with vertical seepage and surcharge. Soil Dynamics and Earthquake Engineering, 2008, 28( 9): 728– 737
https://doi.org/10.1016/j.soildyn.2007.10.004
18 R Huang, T D Xia, Z J Liu. Seismic passive earth thrust of submerged backfill with two-dimensional steady seepage. Journal of Central South University, 2015, 22( 3): 1062– 1069
https://doi.org/10.1007/s11771-015-2617-4
19 M E Harr. Groundwater and Seepage. New York: McGraw-Hill, 1962
20 J J Wang, F C Liu, C L Ji. Influence of drainage condition on Coulomb-type active earth pressure. Soil Mechanics and Foundation Engineering, 2008, 45( 5): 161– 167
https://doi.org/10.1007/s11204-008-9022-z
21 B J Zhang, J Cao, X Z Zhang. Calculation of water-soil pressure of silt layer in the foundation pit considering the seepage effect. Advanced Materials Research, 2012, 568 : 176– 181
https://doi.org/10.4028/www.scientific.net/AMR.568.176
22 P L A Barros. A Coulomb-type solution for active earth thrust with seepage. Geotechnique, 2006, 56( 3): 159– 164
https://doi.org/10.1680/geot.2006.56.3.159
23 Z Hu, Z Yang, S P Wilkinson. Active earth pressure acting on retaining wall considering anisotropic seepage effect. Journal of Mountain Science, 2017, 14( 6): 1202– 1211
https://doi.org/10.1007/s11629-016-4014-3
24 Z Hu, Z Yang, S P Wilkinson. An analysis of passive earth pressure modification due to seepage flow effects. Canadian Geotechnical Journal, 2018, 55( 5): 666– 679
https://doi.org/10.1139/cgj-2017-0087
25 A H Soubra, R Kastner, A Benmansour. Passive earth pressures in the presence of hydraulic gradients. Geotechnique, 1999, 49( 3): 319– 330
https://doi.org/10.1680/geot.1999.49.3.319
26 P L A Barros, P J Santos. Coefficients of active earth pressure with seepage effect. Canadian Geotechnical Journal, 2012, 49( 6): 651– 658
https://doi.org/10.1139/t2012-020
27 P J Santos, P L A Barros. Active earth pressure due to soil mass partially subjected to water seepage. Canadian Geotechnical Journal, 2015, 52( 11): 1886– 1891
https://doi.org/10.1139/cgj-2014-0367
28 M Abramowitz, I A Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972
29 D Drucker, W Prager, H Greenberg. Extended limit design theorems for continuous media. Quarterly of Applied Mathematics, 1952, 9( 4): 381– 389
https://doi.org/10.1090/qam/45573
30 C Qin, S C Chian. Bearing capacity analysis of a saturated non-uniform soil slope with discretisation-based kinematic analysis. Computers and Geotechnics, 2018, 96 : 246– 257
https://doi.org/10.1016/j.compgeo.2017.11.003
31 D Du, D Dias, X Yang. Analysis of earth pressure for shallow square tunnels in anisotropic and non-homogeneous soils. Computers and Geotechnics, 2018, 104 : 226– 236
https://doi.org/10.1016/j.compgeo.2018.08.022
32 R L Michalowski. Slope stability analysis: A kinematical approach. Geotechnique, 1995, 45( 2): 283– 293
https://doi.org/10.1680/geot.1995.45.2.283
33 R L Michalowski. Stability of uniformly reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123( 6): 546– 556
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(546
34 X L Yang, J H Yin. Slope stability analysis with nonlinear failure criterion. Journal of Engineering Mechanics, 2004, 130( 3): 267– 273
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:3(267
35 S Ghosh, R P Sharma. Pseudo-dynamic active response of non-vertical retaining wall supporting cΦ backfill. Geotechnical and Geological Engineering, 2010, 28( 5): 633– 641
https://doi.org/10.1007/s10706-010-9321-9
36 J J Wang, H J Chai, J G Zhu, C Zhao. Static and seismic passive resistance in saturated backfill. In: Proceedings of the 12th International Symposium on Water-Rock Interaction. Kunming: Taylor & Francis Group, 2007, 1411– 1415
37 S M Ahmad. Pseudodynamic approach for computation of seismic passive earth resistance including seepage. Ocean Engineering, 2013, 63 : 63– 71
https://doi.org/10.1016/j.oceaneng.2013.01.020
38 D J Henkel. The relationship between the strength, pore-water pressure and volume change characteristics of saturated clays. Geotechnique, 1959, 9( 3): 119– 135
https://doi.org/10.1680/geot.1959.9.3.119
39 D Choudhury, S Singh. New approach for estimation of static and seismic active earth pressure. Geotechnical and Geological Engineering, 2006, 24( 1): 117– 127
https://doi.org/10.1007/s10706-004-2366-x
40 K S Subba Rao, D Choudhury. Seismic passive earth pressures in soils. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131( 1): 131– 135
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(131
41 S Ghosh, R P Sharma. Seismic active earth pressure on the back of battered retaining wall supporting inclined backfill. International Journal of Geomechanics, 2012, 12( 1): 54– 63
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000112
42 D W Taylor. Fundamentals of Soils Mechanics. London: Chapman and Hall, 1948
43 K Rafiezadeh, B Ataie-Ashtiani. Transient free-surface seepage in three-dimensional general anisotropic media by BEM. Engineering Analysis with Boundary Elements, 2014, 46 : 51– 66
https://doi.org/10.1016/j.enganabound.2014.04.025
[1] Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN. Experimental study on compaction-induced anisotropic mechanical property of rockfill material[J]. Front. Struct. Civ. Eng., 2021, 15(1): 109-123.
[2] Lingyun YOU, Zhanping YOU, Kezhen YAN. Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay[J]. Front. Struct. Civ. Eng., 2019, 13(1): 110-122.
[3] Dong-Mei ZHANG, Zhen-Yu YIN, Pierre-Yves HICHER, Hong-Wei HUANG. Analysis of cement-treated clay behavior by micromechanical approach[J]. Front Struc Civil Eng, 2013, 7(2): 137-153.
[4] Lianyang ZHANG. Aspects of rock permeability[J]. Front Struc Civil Eng, 2013, 7(2): 102-116.
[5] Feng ZHANG, Bin YE, Guanlin YE. Unified description of sand behavior[J]. Front Arch Civil Eng Chin, 2011, 5(2): 121-150.
[6] Mingjing JIANG, Haijun HU, Jianbing PENG, Serge LEROUEIL. Experimental study of two saturated natural soils and their saturated remoulded soils under three consolidated undrained stress paths[J]. Front Arch Civil Eng Chin, 2011, 5(2): 225-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed