Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2022, Vol. 16 Issue (8) : 1056-1069    https://doi.org/10.1007/s11709-022-0868-3
RESEARCH ARTICLE
Structural optimization of filament wound composite pipes
Roham RAFIEE(), Reza SHAHZADI, Hossein SPERESP
Faculty of New Science and Technologies, University of Tehran, Tehran 1439955171, Iran
 Download: PDF(2742 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optimization procedure is developed for obtaining optimal structural design of filament wound composite pipes with minimum cost utilized in pressurized water and waste-water pipelines. First, the short-term and long-term design constraints dictated by international standards are identified. Then, proper computational tools are developed for predicting the structural properties of the composite pipes based on the design architecture of layers. The developed computational tools are validated by relying on experimental analysis. Then, an integrated design-optimization process is developed to minimize the price as the main objective, taking into account design requirements and manufacturing limitations as the constraints and treating lay-up sequence, fiber volume fraction, winding angle, and the number of total layers as design variables. The developed method is implemented in various case studies, and the results are presented and discussed.

Keywords composite pipes      optimization      experimental validation      computational modeling      filament winding     
Corresponding Author(s): Roham RAFIEE   
Just Accepted Date: 09 September 2022   Online First Date: 31 October 2022    Issue Date: 02 December 2022
 Cite this article:   
Roham RAFIEE,Reza SHAHZADI,Hossein SPERESP. Structural optimization of filament wound composite pipes[J]. Front. Struct. Civ. Eng., 2022, 16(8): 1056-1069.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-022-0868-3
https://academic.hep.com.cn/fsce/EN/Y2022/V16/I8/1056
Fig.1  Workflow of the research.
Fig.2  Measuring (a) HTS; (b) LTS; (c) pipe stiffness and (d) failure pressure.
materialpropertyvalue
glass fiberEf (GPa)78
Gf (GPa)32
νf0.22
Sf (N/Tex)0.4
ρf (g/m3)2.56
polyester resinEm (GPa)3.5
Gm (GPa)1.32
νm0.33
ρm (g/m3)1.15
silica sandEs (GPa)10
Gs (GPa)3.5
ρs (g/m3)2.65
Tab.1  Mechanical properties of glass fiber, polyester resin and sand
DN (mm)lay-upLTS (N/mm)HTS (N/mm)
netting analysis (error)experimentalnetting analysis (error)experimental
300[90/±60.22/90]139.49 (3.01%)143.831414.43 (5.54%)1497.44
300[902/±60.25/903]351.5 (2.68%)361.173564.13 (7.31%)3845.54
500[902/±60.24/90]204.15 (9.87%)226.511863.48 (13.9%)2165.2
500[902/±57.54/90]267.45 (6.38%)285.692012.85 (9.74%)2230.2
500[902/±60.26/903]391.25 (4.47%)409.543703.25 (8.12%)4030.55
600[902/±60.24/902]245.33 (8.5%)268.192487.6 (12.4%)2840.18
500[90/±60.2/C1.17(mm)/±60.22/90]185.90 (3.28%)192.221634.14 (8.73%)1790.47
Tab.2  Comparing estimated HTS and LTS with experimental observations
DN (mm)lay-upstiffness (Pa)
solid mechanic method (error)experimental
300[90/±60.22/90]2569 (8.3%)2800.6
400[90/±60.23/903]2499 (10%)2775
500[902/±57.54/90]4171 (8.2%)4546.4
600[902/±60.24/902]2091 (7.4%)2258.3
700[902/±52.55/903]2756 (9.1%)3031.6
700[90/±60.2/C1.17(mm)/±60.22/90]2503 (13.4%)2890.4
Tab.3  Comparing estimated stiffness with experimental observations
DN (mm)lay-upfailure pressure (MPa)
indirect netting analysis (error)experimental
300[90/±60.2/90]6.23 (11.05%)5.61
300[90/±60.2]4.35 (8.2%)4.02
300[±60.2]2.63 (6.91%)2.46
400[90/±60.2]3.38 (10.82%)3.05
400[±52.5/C1.04(mm)/90/±52.5]4.41 (6.5%)4.72
Tab.4  Comparing failure pressure with experimental observations
scopedefinition
objective design constraintsminimizing total wall thickness (thoop + tcross + tcore)
(HTS, LTS) values in Ref. [28] based on DN and PN
PF 2.CPL·PN
PS ? CSL·SN
manufacturing constraintsθ ∈ [50°, 70°]
Wf = [73%, 77%]
Vs = [45%, 55%]
total wall thickness ? 6 mm
design variables1) No. of hoop layers (p); 2) No. of cross layers (q); 3) winding angle (θ); 4) mass of sand (ms); 5) lay-up sequence
input parameters by usermechanical properties of fiber, resin and sand
DN-PN-SN
CPL and CSL
Tab.5  Overview of optimization problem
Fig.3  Description of optimization scenarios for the verification purpose.
scenarioconstantoutputs
ms (kg)p+qθWflay-up config.SN (Pa)HTS (N/mm)LTS (N/mm)Pf (bar)Wfms (kg)t (mm)
scenario Aa runtime = 1.5 min0760°73%[90/±605/90]19192276299766.9
[±605/902]1873
[±60/90/±604/90]1769
[±604/90/±60/90]1745
[90/±604/90/±60]1713
[±602/90/±603/90]1691
[±603/90/±602/90]1683
[902//±605]1598
[90/±603/90/±602]1578
[±604/902/±60]1570
[90/±60/90/±604]1521
[90/±602/90/±603]1514
[±60/902/±604]1401
[±603/902/±602]1388
[±602/902/±603]1331
scenario Ba runtime = 7 min0773%[±57.54/903]16052082277696.5
[±57.53/903/±57.5]1251
[902/±57.5/90/±57.53]1252
[903/±57.54]1269
[±57.52/902/±57.52/90]1360
[±57.53/902/±57.5/90]1414
[±57.5/902/±57.53/90]1443
[902/±57.53/90/±57.5]1450
[±57.53/90/±57.5/902]1532
[±57.52/90/±57.52/902]1536
[90/±57.52/90/±57.52/90]1565
[90/±57.5/90/±57.53/90]1567
[90/±57.53/90/±57.5/90]1632
[902/±57.54/90]1664
[90/±57.54/902]1775
[±57.5/90/±57.53/902]1617
scenario Ca runtime = 20 min07[90/±57.54/902]150322803037677%6.1
[902/±57.54/90]1412
[±57.54/903]1370
[90/±57.5/90/±57.5/90]1386
[±57.5/90/±57.5/903/57.5]1340
[90/±57.5/90/±57.53/90]1331
[57.53/90/±57.5/902]1309
[±57.52/90/±57.52/902]1311
[±57.5/90/±57.53/902]1375
scenario Da runtime = 145 min0[±62.55/90]127222082657475%6.2
[90/±57.54/902]150322803037677%6.1
scenario Db runtime = 500 min0[903/±67.56/903/±67.5]3134413021010373%9.5
[903/±62.56/904]3134402931310174%9.5
[903/±707/903]3150457320411475%9.5
[903/±556/904]319838615069676%9.6
[902/±708/903]3172501824512577%9.5
scenario Ec runtime = 115 min75[±552/C/±553/90]500820234317777%9.6
[±553/C/±552/90]5046
scenario Fc runtime = 840 min[±602/C/±602/902]507020992627077%859.2
[±603/C/±60/902]5086
[90/±60/C/±603/90]5095
[90/±602/C/±602/901]5171
Tab.6  Outputs of optimization procedure for different scenarios
Fig.4  Outputs of optimization for the scenario “A”. (a) LTS and HTS; (b) pipe stiffness.
Fig.5  Outputs of optimization for the scenario “B”. (a) LTS and HTS; (b) pipe stiffness.
Fig.6  Outputs of optimization for the scenario “C”.
Fig.7  Comparing variations of thickness versus winding angle for different fiber weight fraction as the output of optimization for {600-16-1000} GFRP pipes with (a) 6 and (b) 7 layers.
1 S Nikbakt, S Kamarian, M Shakeri. A review on optimization of composite structures Part I: Laminated composites. Composite Structures, 2018, 195: 158–185
https://doi.org/10.1016/j.compstruct.2018.03.063
2 G Pan, J Lu, K Shen, J Ke. Optimization of composite cylindrical shell subjected to hydrostatic pressure. In: International Conference on Intelligent Robotics and Applications. Cham: Springer, 2015, 81–90
3 A A Smerdov. A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling I. Shells under axial compression. Composites Science and Technology, 2000, 60(11): 2057–2066
https://doi.org/10.1016/S0266-3538(00)00102-0
4 C G Diaconu, M Sato, H Sekine. Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters. Composite Structures, 2002, 58(4): 423–433
https://doi.org/10.1016/S0263-8223(02)00130-7
5 J P Foldager, J S Hansen, N Olhoff. Optimization of the buckling load for composite structures taking thermal effects into account. Structural and Multidisciplinary Optimization, 2001, 21(1): 14–31
https://doi.org/10.1007/s001580050164
6 F X Irisarri, M M Abdalla, Z Gürdal. Improved Shepard’s method for the optimization of composite structures. AIAA Journal, 2011, 49(12): 2726–2736
https://doi.org/10.2514/1.J051109
7 M Abouhamze, M Shakeri. Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic algorithm and neural networks. Composite Structures, 2007, 81(2): 253–263
https://doi.org/10.1016/j.compstruct.2006.08.015
8 B Kriegesmann, R Rolfes, E L Jansen, I Elishakoff, C Hühne, A Kling. Design optimization of composite cylindrical shells under uncertainty. Computers, Materials & Continua, 2012, 32(3): 177–200
9 M Rouhi, H Ghayoor, S V Hoa, M Hojjati. Computational efficiency and accuracy of multi-step design optimization method for variable stiffness composite structures. Thin-walled Structures, 2017, 113: 136–143
https://doi.org/10.1016/j.tws.2017.01.019
10 U Topal. Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load. Materials & Design, 2009, 30(7): 2584–2594
https://doi.org/10.1016/j.matdes.2008.09.020
11 Z Wang, J H S Jr Almeida, L St-Pierre, Z Wang, S G P Castro. Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders. Composite Structures, 2020, 254: 112821
https://doi.org/10.1016/j.compstruct.2020.112821
12 Salim M., Bodaghi M., Kamarian S., Shakeri M.. Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environments. Latin American Journal of Solids and Structures, 2018, 15(1): 1–16
13 S Adali, M Walker, V E Verijenko. Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbucklikng strength using continuous and discrerte ply angles. Composite Structures, 1996, 35(1): 117–130
14 E Ameri, M M Aghdam, M Shakeri. Global optimization of laminated cylindrical panels based on fundamental natural frequencies. Composite Structures, 2012, 94(9): 2697–2705
https://doi.org/10.1016/j.compstruct.2012.04.005
15 Y Ohta. Genetic algorithms for optimization of laminated composite cylindrical shells. In: 8th Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA: AIAA, 4939
16 Y Ohta. Optimal stacking sequence for nonlinear vibration of laminated composite circular cylindrical shells. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference. Orlando, FL: AIAA, 2010, 2882
17 M H Yas, M Shakeri, N Khaksar. Stacking sequence optimization of a composite cylindrical shell for vibrations by hybrid continuous optimization. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 2008, 222(12): 2385–2394
https://doi.org/10.1243/09544062JMES900
18 M A Luersen, C A Steeves, P B Nair. Curved fiber paths optimization of a composite cylindrical shell via Kriging-based approach. Journal of Composite Materials, 2015, 49(29): 3583–3597
https://doi.org/10.1177/0021998314568168
19 M Shakeri, M H Yas, M G Gol. Optimal stacking sequence of laminated cylindrical shells using genetic algorithm. Mechanics of Advanced Materials and Structures, 2005, 12(4): 305–312
https://doi.org/10.1080/15376490590898501
20 I P CorreiaP G MartinsC M SoaresC M SoaresJ Herskovits. Modelling and optimization of laminated adaptive shells of revolution. Composite Structures, 2006, 75(1−4): 49−59
21 N Minsch, F H Herrmann, T Gereke, A Nocke, C Cherif. Analysis of filament winding processes and potential equipment technologies. Procedia CIRP, 2017, 66: 125–130
https://doi.org/10.1016/j.procir.2017.03.284
22 C Colombo, L Vergani. Optimization of filament winding parameters for the design of a composite pipe. Composites. Part B, Engineering, 2018, 148: 207–216
https://doi.org/10.1016/j.compositesb.2018.04.056
23 N J Jin, H G Hwang, J H Yeon. Structural analysis and optimum design of GRP pipes based on properties of materials. Construction & Building Materials, 2013, 38: 316–326
https://doi.org/10.1016/j.conbuildmat.2012.07.115
24 J H S Jr Almeida, M L Ribeiro, V Tita, S C Amico. Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Composite Structures, 2017, 178: 20–26
https://doi.org/10.1016/j.compstruct.2017.07.054
25 C Liu, Y Shi. Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses. Composite Structures, 2020, 235: 111755
https://doi.org/10.1016/j.compstruct.2019.111755
26 Z Zhang, S Hou, Q Liu, X Han. Winding orientation optimization design of composite tubes based on quasistatic and dynamic experiments. Thin-walled Structures, 2018, 127: 425–433
https://doi.org/10.1016/j.tws.2017.11.052
27 V Alcántar, S Ledesma, S M Aceves, E Ledesma, A Saldana. Optimization of type III pressure vessels using genetic algorithm and simulated annealing. International Journal of Hydrogen Energy, 2017, 42(31): 20125–20132
https://doi.org/10.1016/j.ijhydene.2017.06.146
28 C950-01 ANSI/AWWA. Standard for Fiberglass Pressure Pipe. Denver: American Water Works Association, 2001
29 R F Gibson. Principles of Composite Material Mechanics. 2nd ed. Boca Raton, FL: CRC Press, 2007
30 D K Roylance. Netting Analysis for Filament-wound Pressure Vessels. Watertown, MA: Army Materials and Mechanics Research Center, 1976
31 D2105-01 ASTM. Standard Test Method for Longitudinal Tensile Properties of Fiberglass (glass Fiber Reinforced Thermosetting Resin) Pipe and Tube. West Conshohocken, PA: ASTM, 2001
32 D2290-00 ASTM. Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disc Method. West Conshohocken, PA: ASTM, 2000
33 D1599-99 ASTM. Standard Test Method for Resistance to Short-time Hydraulic Pressure of Plastic Pipes, Tubing, and Fittings. West Conshohocken, PA: ASTM, 1999
34 D2412-02 ASTM. Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-plate Loading. West Conshohocken, PA: ASTM, 2002
35 D3171-15 ASTM. Standard Test Method for Constituent Content of Composite Materials. West Conshohocken, PA: ASTM, 2015
36 D2992-06 ASTM. Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for Fiberglass Pipe and Fitting. West Conshohocken, PA: ASTM, 2006
37 10468 ISO. Glass-reinforced Thermosetting Plastics (GRP) Pipes—Determination of the Ring Creep Properties Under Wet or Dry Condition. Genewa: ISO, 2018
38 R Rafiee, A Ghorbanhosseini. Developing a micro-macro mechanical approach for evaluating long-term creep in composite cylinders. Thin-walled Structures, 2020, 151: 106714
https://doi.org/10.1016/j.tws.2020.106714
39 R RafieeA Ghorbanhosseini. Experimental and theoretical investigations of creep on a composite pipe under compressive transverse loading. Fibers and Polymers, 2021, 22(1):222–230
40 R Rafiee, A Ghorbanhosseini. Analyzing the long-term creep behavior of composite pipes: Developing an alternative scenario of short-term multi-stage loading test. Composite Structures, 2020, 254: 112868
https://doi.org/10.1016/j.compstruct.2020.112868
41 R Rafiee, B Mazhari. Simulation of long-term hydrostatic tests on glass fiber reinforced plastic pipes. Composite Structures, 2016, 136: 56–63
42 R Rafiee, B Mazhari. Evaluating long-term performance of glass fiber reinforced plastic pipes subjected to internal pressure. Construction & Building Materials, 2016, 122: 694–701
https://doi.org/10.1016/j.conbuildmat.2016.06.103
43 A M Shaaban, C Anitescu, E Atroshchenko, T Rabczuk. An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes. Applied Acoustics, 2022, 185: 108410
https://doi.org/10.1016/j.apacoust.2021.108410
44 A M Shaaban, C Anitescu, E Atroshchenko, T Rabczuk. 3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113950
https://doi.org/10.1016/j.cma.2021.113950
45 A M Shaaban, C Anitescu, E Atroshchenko, T Rabczuk. Isogeometric boundary element analysis and shape optimization by PSO for 3D axi-symmetric high frequency Helmholtz acoustic problems. Journal of Sound and Vibration, 2020, 486: 115598
https://doi.org/10.1016/j.jsv.2020.115598
46 A M Shaaban, C Anitescu, E Atroshchenko, T Rabczuk. Shape optimization by conventional and extended isogeometric boundary element method with PSO for two-dimensional Helmholtz acoustic problems. Engineering Analysis with Boundary Elements, 2020, 113: 156–169
https://doi.org/10.1016/j.enganabound.2019.12.012
47 H Ghasemi, H S Park, T Rabczuk. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62
https://doi.org/10.1016/j.cma.2017.12.005
48 H Ghasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
[1] Xianrui LI, Ling XU, Qidi ZONG, Fu JIANG, Xinyao YU, Jun WANG, Feipeng XIAO. Optimization of polyurethane-bonded thin overlay mixture designation for airport pavement[J]. Front. Struct. Civ. Eng., 2022, 16(8): 947-961.
[2] Van Quan TRAN, Hai-Van Thi MAI, Thuy-Anh NGUYEN, Hai-Bang LY. Assessment of different machine learning techniques in predicting the compressive strength of self-compacting concrete[J]. Front. Struct. Civ. Eng., 2022, 16(7): 928-945.
[3] Zixuan CHEN, Tao LIU, Xiao MA, Hanyu TANG, Jianyou HUANG, Jianzhong PEI. Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement slab[J]. Front. Struct. Civ. Eng., 2022, 16(7): 896-908.
[4] Aydin HASSANZADEH, Saber MORADI. Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness of Fe-based SMAs[J]. Front. Struct. Civ. Eng., 2022, 16(3): 281-301.
[5] Serdar CARBAS, Musa ARTAR. Comparative seismic design optimization of spatial steel dome structures through three recent metaheuristic algorithms[J]. Front. Struct. Civ. Eng., 2022, 16(1): 57-74.
[6] Gebrail BEKDAŞ, Melda YÜCEL, Sinan Melih NIGDELI. Estimation of optimum design of structural systems via machine learning[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1441-1452.
[7] Hamid GHASEMI. A multiscale material model for heterogeneous liquid droplets in solid soft composites[J]. Front. Struct. Civ. Eng., 2021, 15(5): 1292-1299.
[8] Narges PAHNABI, Seyed Mohammad SEYEDPOOR. Damage identification in connections of moment frames using time domain responses and an optimization method[J]. Front. Struct. Civ. Eng., 2021, 15(4): 851-866.
[9] Trong NGHIA-NGUYEN, Mamoru KIKUMOTO, Samir KHATIR, Salisa CHAIYAPUT, H. NGUYEN-XUAN, Thanh CUONG-LE. Data-driven approach to solve vertical drain under time-dependent loading[J]. Front. Struct. Civ. Eng., 2021, 15(3): 696-711.
[10] Yasmina KELLOUCHE, Mohamed GHRICI, Bakhta BOUKHATEM. Service life prediction of fly ash concrete using an artificial neural network[J]. Front. Struct. Civ. Eng., 2021, 15(3): 793-805.
[11] Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
[12] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[13] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[14] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[15] Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI. Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses[J]. Front. Struct. Civ. Eng., 2020, 14(3): 675-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed