Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (4) : 322-332    https://doi.org/10.1007/s13238-017-0425-3
REVIEW
IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes
Cécile Apert, Paola Romagnoli(), Joost P. M. van Meerwijk()
CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
 Download: PDF(1116 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Immunosuppressive regulatory T lymphocytes (Treg) expressing the transcription factor Foxp3 play a vital role in the maintenance of tolerance of the immunesystem to self and innocuous non-self. Most Treg that are critical for the maintenance of tolerance to self, develop as an independent T-cell lineage from common T cell precursors in the thymus. In this organ, their differentiation requires signals from the T cell receptor for antigen, from co-stimulatory molecules, as well as from cytokine-receptors. Here we focus on the cytokines implicated in thymic development of Treg, with a particular emphasis on the roles of interleukin-2 (IL-2) and IL-15. The more recently appreciated involvement of TGF-β in thymic Treg development is also briefly discussed. Finally, we discuss how cytokine-dependence of Treg development allows for temporal, quantitative, and potentially qualitative modulation of this process.

Keywords regulatory T cells      thymus      differentiation      IL-2      IL-15     
Corresponding Author(s): Paola Romagnoli,Joost P. M. van Meerwijk   
Issue Date: 27 April 2018
 Cite this article:   
Cécile Apert,Paola Romagnoli,Joost P. M. van Meerwijk. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes[J]. Protein Cell, 2018, 9(4): 322-332.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0425-3
https://academic.hep.com.cn/pac/EN/Y2018/V9/I4/322
1 Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3(+) regulatory T cells specific for self antigen expressed and presented by Aire(+) medullary thymic epithelial cells. Nature Immunol 8:351–358
https://doi.org/10.1038/ni1444
2 Bayer AL, Lee JY, de la Barrera A, Surh CD, Malek TR (2008) A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J Immunol 181:225–234
https://doi.org/10.4049/jimmunol.181.1.225
3 Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet 27:20–21
https://doi.org/10.1038/83713
4 Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory Tcells in immune tolerance. Annu Rev Immunol 30:733–758
https://doi.org/10.1146/annurev-immunol-020711-075043
5 Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Kuchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunol 16:933–941
https://doi.org/10.1038/ni.3246
6 Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genetics 27:68–73
https://doi.org/10.1038/83784
7 Burchill MA, Goetz CA, Prlic M, O’Neil JJ, Harmon IR, Bensinger SJ, Turka LA, Brennan P, Jameson SC, Farrar MA (2003) Distinct Effects of STAT5 Activation on CD4+ and CD8+ T Cell Homeostasis: Development of CD4+CD25+ Regulatory T Cells versus CD8+ Memory T Cells. J Immunol 171:5853–5864
https://doi.org/10.4049/jimmunol.171.11.5853
8 Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290
https://doi.org/10.4049/jimmunol.178.1.280
9 Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121
https://doi.org/10.1016/j.immuni.2007.11.022
10 Capone M, Romagnoli P, Beermann F, MacDonald HR, van Meerwijk JPM (2001) Dissociation of thymic positive and negative selection in transgenic mice expressing major histocompatibility complex class I molecules exclusively on thymic cortical epithelial cells. Blood 97:1336–1342
https://doi.org/10.1182/blood.V97.5.1336
11 Caramalho I, Nunes-Silva V, Pires AR, Mota C, Pinto AI, Nunes-Cabaco H, Foxall RB, Sousa AE (2015) Human regulatory T-cell development is dictated by Interleukin-2 and-15 expressed in a non-overlapping pattern in the thymus. J Autoimmun 56:98–110
https://doi.org/10.1016/j.jaut.2014.11.002
12 Castillo EF, Acero LF, Stonier SW, Zhou D, Schluns KS (2010) Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation. Blood 116:2494–2503
https://doi.org/10.1182/blood-2010-03-277103
13 Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P, Ignatowicz L (2013) Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258–262
https://doi.org/10.1038/nature12079
14 Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, Rudensky AY (2016) An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 17:1322–1333
https://doi.org/10.1038/ni.3540
15 Colpitts SL, Stonier SW, Stoklasek TA, Root SH, Aguila HL, Schluns KS, Lefrancois L (2013) Transcriptional regulation of IL-15 expression during hematopoiesis. J Immunol 191:3017–3024
https://doi.org/10.4049/jimmunol.1301389
16 Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, Xiao Y, Neves JF, Fonseca-Pereira D, Jacobs H, Pennington DJet al. (2013) Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210:715–728
https://doi.org/10.1084/jem.20112061
17 Cowan JE, McCarthy NI, Anderson G (2016) CCR7 controls thymus recirculation, but not production and emigration, of Foxp3(+) T Cells. Cell reports 14:1041–1048
https://doi.org/10.1016/j.celrep.2016.01.003
18 Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S, Ikuta K (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA 111:1915–1920
https://doi.org/10.1073/pnas.1318281111
19 Cuss SM, Green EA (2012) Abrogation of CD40-CD154 signaling impedes the homeostasis of thymic resident regulatory T cells by altering the levels of IL-2, but does not affect regulatory T cell development. J Immunol 189:1717–1725
https://doi.org/10.4049/jimmunol.1200588
20 D’Cruz LM, Klein L (2005) Development and function of agonistinduced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159
https://doi.org/10.1038/ni1264
21 De Smedt M, Verhasselt B, Kerre T, Vanhecke D, Naessens E, Leclercq G, Renauld JC, Van Snick J, Plum J (2000) Signals from the IL-9 receptor are critical for the early stages of human intrathymic T cell development. J Immunol 164:1761–1767
https://doi.org/10.4049/jimmunol.164.4.1761
22 Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, Powrie F (2005) T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 201:737–746
https://doi.org/10.1084/jem.20040685
23 Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R, Salomon BL (2003) Continuous activation of autoreactive CD4+ CD25+ regulatory T Cells in the steady state. J Exp Med 198:737–746
https://doi.org/10.1084/jem.20030686
24 Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang H-D, Bopp T, Schmitt Eet al. (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38
https://doi.org/10.1371/journal.pbio.0050038
25 Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 3:3
https://doi.org/10.1038/ni904
26 Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 6:1142–1151
https://doi.org/10.1038/ni1263
27 Hale JS, Fink PJ (2009) Back to the thymus: peripheral T cells come home. Immunol Cell Biol 87:58–64
https://doi.org/10.1038/icb.2008.87
28 Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL, Roman E, Arima K, Wang YH, Voo KS, Cao Wet al. (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999–3007
https://doi.org/10.4049/jimmunol.0804106
29 Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277
https://doi.org/10.1016/j.immuni.2004.07.009
30 Hu Z, Lancaster JN, Sasiponganan C, Ehrlich LI (2015) CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med 212:1947–1965
https://doi.org/10.1084/jem.20150178
31 Josefowicz SZ, Lu LF, Rudensky AY (2012a) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564
https://doi.org/10.1146/annurev.immunol.25.022106.141623
32 Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012b) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399
https://doi.org/10.1038/nature10772
33 Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M (2014) A signal integration model of thymic selection and natural regulatory T cell commitment. J Immunol 193:5983–5996
https://doi.org/10.4049/jimmunol.1400889
34 Kieback E, Hilgenberg E, Stervbo U, Lampropoulou V, Shen P, Bunse M, Jaimes Y, Boudinot P, Radbruch A, Klemm Uet al. (2016) Thymus-derived regulatory T cells are positively selected on natural self-antigen through cognate interactions of high functional avidity. Immunity 44:1114–1126
https://doi.org/10.1016/j.immuni.2016.04.018
35 Kim HJ, Cantor H (2011) Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Sem Immunol 23:446–452
https://doi.org/10.1016/j.smim.2011.06.001
36 Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptorinduced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551
https://doi.org/10.1084/jem.20070109
37 Kisielow P, Miazek A (1995) Positive selection of Tcells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor. J Exp Med 181:1975–1984
https://doi.org/10.1084/jem.181.6.1975
38 Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, Yasuda K, Motooka D, Nakamura S, Kondo Met al. (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nature Immunol 18:173–183
https://doi.org/10.1038/ni.3646
39 Klein L, Jovanovic K (2011) Regulatory T cell lineage commitment in the thymus. Sem Immunol 23:401–409
https://doi.org/10.1016/j.smim.2011.06.003
40 Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844
https://doi.org/10.1038/nri2669
41 Konkel JE, Jin W, Abbatiello B, Grainger JR, Chen W (2014) Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc Natl Acad Sci USA 111:E465–E473
https://doi.org/10.1073/pnas.1320319111
42 Kurd N, Robey EA (2016) T-cell selection in the thymus: a spatial and temporal perspective. Immunol Rev 271:114–126
https://doi.org/10.1111/imr.12398
43 Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606
https://doi.org/10.1146/annurev.immunol.23.021704.115601
44 Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH (1996) Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383:81–85
https://doi.org/10.1038/383081a0
45 Le Borgne M, Ladi E, Dzhagalov I, Herzmark P, Liao YF, Chakraborty AK, Robey EA (2009) The impact of negative selection on thymocyte migration in the medulla. Nat Immunol 10:823–830
https://doi.org/10.1038/ni.1761
46 Li MO, Sanjabi S, Flavell RA (2006) Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and-independent mechanisms. Immunity 25:455–471
https://doi.org/10.1016/j.immuni.2006.07.011
47 Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111
https://doi.org/10.1016/j.immuni.2007.11.021
48 Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA, Rudensky AY (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci USA 105:11903–11908
https://doi.org/10.1073/pnas.0801506105
49 Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 9:632–640
https://doi.org/10.1038/ni.1607
50 Love PE, Bhandoola A (2011) Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 11:469–477
https://doi.org/10.1038/nri2989
51 Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G (2016) Control of the thymic medulla and its influence on alphabetaT-cell development. Immunol Rev 271:23–37
https://doi.org/10.1111/imr.12406
52 Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita Het al. (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15:473–481
https://doi.org/10.1038/ni.2849
53 Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339:1219–1224
https://doi.org/10.1126/science.1233913
54 Malek TR, Porter BO, Codias EK, Scibelli P, Yu A (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905–2914
https://doi.org/10.4049/jimmunol.164.6.2905
55 Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178
https://doi.org/10.1016/S1074-7613(02)00367-9
56 Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067
https://doi.org/10.1084/jem.20042276
57 Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25:441–454
https://doi.org/10.1016/j.immuni.2006.07.012
58 Marshall D, Sinclair C, Tung S, Seddon B (2014) Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J Immunol 193:5525–5533
https://doi.org/10.4049/jimmunol.1402144
59 Mazzucchelli R, Hixon JA, Spolski R, Chen X, Li WQ, Hall VL, Willette-Brown J, Hurwitz AA, Leonard WJ, Durum SK (2008) Development of regulatory Tcells requires IL-7Ralpha stimulation by IL-7 or TSLP. Blood 112:3283–3292
https://doi.org/10.1182/blood-2008-02-137414
60 McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204:2513–2520
https://doi.org/10.1084/jem.20070601
61 McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205:2575–2584
https://doi.org/10.1084/jem.20080866
62 Meredith M, Zemmour D, Mathis D, Benoist C (2015) Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol 16:942–949
https://doi.org/10.1038/ni.3247
63 Ohigashi I, Kozai M, Takahama Y (2016) Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 271:10–22
https://doi.org/10.1111/imr.12404
64 Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano Net al. (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37:785–799
https://doi.org/10.1016/j.immuni.2012.09.010
65 Ouyang W, Beckett O, Ma Q, Li MO (2010) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32:642–653
https://doi.org/10.1016/j.immuni.2010.04.012
66 Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerl D, Seddon B, MacDonald AS, McKenzie A, Wilson MS (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–1417
https://doi.org/10.1038/mi.2016.4
67 Pennington DJ, Silva-Santos B, Silberzahn T, Escorcio-Correia M, Woodward MJ, Roberts SJ, Smith AL, Dyson PJ, Hayday AC (2006) Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444:1073–1077
https://doi.org/10.1038/nature06051
68 Popmihajlov Z, Xu D, Morgan H, Milligan Z, Smith KA (2012) Conditional IL-2 gene deletion: consequences for T cell proliferation. Front Immunol 3:102
https://doi.org/10.3389/fimmu.2012.00102
69 Ribot J, Enault G, Pilipenko S, Huchenq A, Calise M, Hudrisier D, Romagnoli P, van Meerwijk JPM (2007) Shaping of the autoreactive regulatory T cell repertoire by thymic cortical positive selection. J Immunol 179:6741–6748
https://doi.org/10.4049/jimmunol.179.10.6741
70 Romagnoli P, Hudrisier D, van Meerwijk JPM (2002) Preferential recognition of self-antigens despite normal thymic deletion of CD4+CD25+ regulatory T cells. J Immunol 168:1644–1648
https://doi.org/10.4049/jimmunol.168.4.1644
71 Romagnoli P, Ribot J, Tellier J, van Meerwijk JPM (2008) Thymic and peripheral generation of CD4+Foxp3+ regulatory Tcells. In: Jiang S (ed) Regulatory T cells and clinical application. Springer Science+Business Media, New York, pp 29–55
https://doi.org/10.1007/978-0-387-77909-6_3
72 Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 25:3053–3059
https://doi.org/10.1002/eji.1830251111
73 Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500
https://doi.org/10.1038/nri2785
74 Shevach EM (2011) Biological functions of regulatory T cells. Adv Immunol 112:137–176
https://doi.org/10.1016/B978-0-12-387827-4.00004-8
75 Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K (2013) IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRgammadelta+ intraepithelial lymphocytes. J Immunol 190:6173–6179
https://doi.org/10.4049/jimmunol.1202573
76 Soper DM, Kasprowicz DJ, Ziegler SF (2007) IL-2Rbeta links IL-2R signaling with Foxp3 expression. Eur J Immunol 37:1817–1826
https://doi.org/10.1002/eji.200737101
77 Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, Jameson SC, Hogquist KA (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci USA 110:4679–4684
https://doi.org/10.1073/pnas.1217532110
78 Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J (2015) Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43:304–317
https://doi.org/10.1016/j.immuni.2015.07.013
79 Suzuki H, Kundig T, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard J, Ohashi P, Griesser Het al. (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268(5216):1472–1476
https://doi.org/10.1126/science.7770771
80 Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I (1999) Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 190:1561–1572
https://doi.org/10.1084/jem.190.11.1561
81 Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162
https://doi.org/10.1038/ni1160
82 Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G, Guinter T, McCaughtry T, Etzensperger R, Feigenbaum Let al. (2013) Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38:1116–1128
https://doi.org/10.1016/j.immuni.2013.02.022
83 Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987
https://doi.org/10.1016/j.cell.2015.10.013
84 Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, Zheng XX, Strom TB, Bluestone JA (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352
https://doi.org/10.4049/jimmunol.171.7.3348
85 Tani-ichi S, Shimba A, Wagatsuma K, Miyachi H, Kitano S, Imai K, Hara T, Ikuta K (2013) Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc Natl Acad Sci USA 110:612–617
https://doi.org/10.1073/pnas.1219242110
86 Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Perals C, Leobon B, Fazilleau N, Joffre OP, Robey EAet al. (2015) Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol 16:628–634
https://doi.org/10.1038/ni.3150
87 Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Duber S, Geffers R, Giehr Pet al. (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190:3180–3188
https://doi.org/10.4049/jimmunol.1203473
88 Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200:493–505
https://doi.org/10.1084/jem.20040643
89 Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151
https://doi.org/10.1038/375148a0
90 Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and-15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 181:3285–3290
https://doi.org/10.4049/jimmunol.181.5.3285
91 von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181:1519–1526
https://doi.org/10.1084/jem.181.4.1519
92 Vuddamalay, Y., and van Meerwijk, J. (2017). CD28neg and CD28low CD8+ regulatory T cells: Of Mice and Men. Front Immunol 8.
https://doi.org/10.3389/fimmu.2017.00031
93 Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory Tcells in human thymus. Nature 436:1181–1185
https://doi.org/10.1038/nature03886
94 Weist BM, Kurd N, Boussier J, Chan SW, Robey EA (2015) Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat Immunol 16:635–641
https://doi.org/10.1038/ni.3171
95 Wilkinson RW, Anderson G, Owen JJ, Jenkinson EJ (1995) Positive selection of thymocytes involves sustained interactions with the thymic microenvironment. J Immunol 155:5234–5240
96 Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530
https://doi.org/10.1016/1074-7613(95)90180-9
97 Wirnsberger G, Mair F, Klein L (2009) Regulatory T cells differentiation of thymocytes does not require a dedicated antigenpresenting cell but is under T cell-intrinsic developmental control. Proc Natl Acad Sci USA 106:10278–10283
https://doi.org/10.1073/pnas.0901877106
98 Wolf M, Schimpl A, Hunig T (2001) Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(-) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol 31:1637–1645
https://doi.org/10.1002/1521-4141(200106)31:6<1637::AID-IMMU1637>3.0.CO;2-T
99 Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N (2016) Molecular and cellular characterization of human CD8 T suppressor cells. Front Immunol 7:549
https://doi.org/10.3389/fimmu.2016.00549
100 Yamano T, Nedjic J, Hinterberger M, Steinert M, Koser S, Pinto S, Gerdes N, Lutgens E, Ishimaru N, Busslinger Met al. (2015) Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity 42:1048–1061
https://doi.org/10.1016/j.immuni.2015.05.013
101 Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–594
https://doi.org/10.1126/science.aaa7017
102 Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl Ret al. (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375
https://doi.org/10.1182/blood-2006-11-055756
103 Yu W, Nagaoka H, Jankovic M, Misulovin Z, Suh H, Rolink A, Melchers F, Meffre E, Nussenzweig MC (1999) Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400:682–687
https://doi.org/10.1038/23287
104 Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, Lio CW, Li X, Huang Y, Vijayanand Pet al. (2016) Control of Foxp3 stability through modulation of TET activity. J Exp Med 213:377–397
https://doi.org/10.1084/jem.20151438
105 Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812
https://doi.org/10.1038/nature08750
[1] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[2] Wei Li, Wenchen Shen, Bo Zhang, Kuan Tian, Yamu Li, Lili Mu, Zhiyuan Luo, Xiaoling Zhong, Xudong Wu, Ying Liu, Yan Zhou. Long non-coding RNA LncKdm2bregulates cortical neuronal differentiation by cis-activating Kdm2b[J]. Protein Cell, 2020, 11(3): 161-186.
[3] Dan Tong, Li Zhang, Fei Ning, Ying Xu, Xiaoyu Hu, Yan Shi. Contact-dependent delivery of IL-2 by dendritic cells to CD4 T cells in the contraction phase promotes their long-term survival[J]. Protein Cell, 2020, 11(2): 108-123.
[4] Hui Cheng, Zhaofeng Zheng, Tao Cheng. New paradigms on hematopoietic stem cell differentiation[J]. Protein Cell, 2020, 11(1): 34-44.
[5] Weili Liu, Ting Li, Pingzhang Wang, Wanchang Liu, Fujun Liu, Xiaoning Mo, Zhengyang Liu, Quansheng Song, Ping Lv, Guorui Ruan, Wenling Han. LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen[J]. Protein Cell, 2018, 9(9): 785-798.
[6] Qianqian Li, Zewen Gao, Ye Chen, Min-Xin Guan. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells[J]. Protein Cell, 2017, 8(6): 439-445.
[7] Zhujun Jiang,Jingtao Chen,Xuemei Du,Hang Cheng,Xiaohu Wang,Chen Dong. IL-25 blockade inhibits metastasis in breast cancer[J]. Protein Cell, 2017, 8(3): 191-201.
[8] Jie Gao,Yue Ma,Hua-Lin Fu,Qian Luo,Zhen Wang,Yu-Huan Xiao,Hao Yang,Da-Xiang Cui,Wei-Lin Jin. Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells[J]. Protein Cell, 2016, 7(5): 351-361.
[9] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[10] Qianqian Liang,Chen Xu,Xinyun Chen,Xiuya Li,Chao Lu,Ping Zhou,Lianhua Yin,Ruizhe Qian,Sifeng Chen,Zhendong Ling,Ning Sun. The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development[J]. Protein Cell, 2015, 6(8): 553-561.
[11] Miho Tanaka-Matakatsu,John Miller,Wei Du. The homeodomain of Eyeless regulates cell growth and antagonizes the paired domain-dependent retinal differentiation function[J]. Protein Cell, 2015, 6(1): 68-78.
[12] Xiang Li,Duanqing Pei,Hui Zheng. Transitions between epithelial and mesenchymal states during cell fate conversions[J]. Protein Cell, 2014, 5(8): 580-591.
[13] Yan Yan, Wenfeng Zeng, Shujun Song, Fayun Zhang, Wenxi He, Wei Liang, Zhongying Niu. Vitamin C induces periodontal ligament progenitor cell differentiation via activation of ERK pathway mediated by PELP1[J]. Prot Cell, 2013, 4(8): 620-627.
[14] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[15] Lina Sun, Haiying Luo, Hongran Li, Yong Zhao. Thymic epithelial cell development and differentiation: cellular and molecular regulation[J]. Prot Cell, 2013, 4(5): 342-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed