Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (8) : 553-561    https://doi.org/10.1007/s13238-015-0176-y
REVIEW
The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development
Qianqian Liang1,Chen Xu1,Xinyun Chen1,Xiuya Li1,Chao Lu1,Ping Zhou1,Lianhua Yin1,Ruizhe Qian1,Sifeng Chen1,Zhendong Ling2,*(),Ning Sun1,*()
1. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
2. Department of Surgery, The Branch of Shanghai No. 1 Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200081, China
 Download: PDF(1564 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesp family proteins comprise two members named mesodermal posterior 1 (Mesp1) and mesodermal posterior 2 (Mesp2). Both Mesp1 and Mesp2 are transcription factors and they share an almost identical basic helix-loop-helix motif. They have been shown to play critical regulating roles in mammalian heart and somite development. Mesp1 sits in the core of the complicated regulatory network for generation of cardiovascular progenitors while Mesp2 is central for somitogenesis. Here we summarize the similarities and differences in their molecular functions during mammalian early mesodermal development and discuss possible future research directions for further study of the functions of Mesp1 and Mesp2. A comprehensive knowledge of molecular functions of Mesp family proteins will eventually help us better understand mammalian heart development and somitogenesis as well as improve the production of specific cell types from pluripotent stem cells for future regenerative therapies.

Keywords Mesp      transcription factor      pluripotent stem cells      cardiovascular differentiation      somitogenesis     
Corresponding Author(s): Zhendong Ling,Ning Sun   
Issue Date: 05 August 2015
 Cite this article:   
Qianqian Liang,Chen Xu,Xinyun Chen, et al. The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development[J]. Protein Cell, 2015, 6(8): 553-561.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0176-y
https://academic.hep.com.cn/pac/EN/Y2015/V6/I8/553
1 Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3: 69-84
https://doi.org/10.1016/j.stem.2008.06.009
2 Bondue A, T?nnler S, Chiapparo G, Chabab S, Ramialison M, Paulissen C, Beck B, Harvey R, Blanpain C (2011) Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J Cell Biol 192: 751-765
https://doi.org/10.1083/jcb.201007063
3 Buckingham M, Desplan C (2010) Developmental mechanisms, patterning and evolution. Curr Opin Genet Dev 20: 343-345
https://doi.org/10.1016/j.gde.2010.06.006
4 Chan SS, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ (2013) Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12: 587-601
https://doi.org/10.1016/j.stem.2013.03.004
5 Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW (2013) Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLOS ONE 8: e63577
https://doi.org/10.1371/journal.pone.0063577
6 David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Müller-H?cker J, Kitajima S, Lickert H (2008) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1- mediated blockade of Wnt-signalling. Nat Cell Biol 10: 338-345
https://doi.org/10.1038/ncb1696
7 Den Hartogh SC, Schreurs C, Monshouwer Kloots JJ, Davis RP, Elliott DA, Mummery CL, Passier R (2015) Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells 33: 56-67
https://doi.org/10.1002/stem.1842
8 Fu J, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D (2013) Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep 1: 235-247
https://doi.org/10.1016/j.stemcr.2013.07.005
9 Islas JF, Liu Y, Weng K, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D (2012) Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA 109: 13016-13021
https://doi.org/10.1073/pnas.1120299109
10 Kattman SJ, Adler ED, Keller GM (2007) Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc Med 17: 240-246
https://doi.org/10.1016/j.tcm.2007.08.004
11 Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127: 3215-3226
12 Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. P Natl Acad Sci USA 102: 13170-13175
https://doi.org/10.1073/pnas.0501672102
13 Lescroart F, Chabab S, Lin X, Rulands S, Paulissen C, Rodolosse A, Auer H, Achouri Y, Dubois C, Bondue A (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16: 829-840
https://doi.org/10.1038/ncb3024
14 Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, Nerbonne JM, Kyba M (2008) Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell stem Cell 3: 55-68
https://doi.org/10.1016/j.stem.2008.04.004
15 Morimoto M, Takahashi Y, Endo M, Saga Y (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435: 354-359
https://doi.org/10.1038/nature03591
16 Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132: 661-680
https://doi.org/10.1016/j.cell.2008.02.008
17 Nakajima Y, Morimoto M, Takahashi Y, Koseki H, Saga Y (2006) Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133: 2517-2525
https://doi.org/10.1242/dev.02422
18 Oginuma M, Niwa Y, Chapman DL, Saga Y (2008) Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 135: 2555-2562
https://doi.org/10.1242/dev.019877
19 Rossant J, Tam PP (2004) Emerging asymmetry and embryonic patterning in early mouse development. Dev Cell 7: 155-164
https://doi.org/10.1016/j.devcel.2004.07.012
20 Saga Y (1998) Genetic rescue of segmentation defect in MesP2- deficient mice by MesP1 gene replacement. Mech Dev 75: 53-66
https://doi.org/10.1016/S0925-4773(98)00077-X
21 Saga Y (2007) Segmental border is defined by the key transcription factor Mesp2, by means of the suppression of Notch activity. Dev Dyn 236: 1450-1455
https://doi.org/10.1002/dvdy.21143
22 Saga Y (2012) The mechanism of somite formation in mice. Curr Opin Genet Dev 22: 331-338
https://doi.org/10.1016/j.gde.2012.05.004
23 Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM (1996) MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122: 2769-2778
24 Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Gene Dev 11: 1827-1839
https://doi.org/10.1101/gad.11.14.1827
25 Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki JI, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126: 3437-3447
26 Saga Y, Kitajima S, Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10: 345-352
https://doi.org/10.1016/S1050-1738(01)00069-X
27 Sasaki N, Kiso M, Kitagawa M, Saga Y (2011) The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 138: 55-64
https://doi.org/10.1242/dev.055533
28 Takahashi Y, Koizumi K, Takagi A, Kitajima S, Inoue T, Koseki H, Saga Y (2000) Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet 25: 390-396
https://doi.org/10.1038/78062
29 Takahashi Y, Kitajima S, Inoue T, Kanno J, Saga Y (2005) Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development 132: 787-796
https://doi.org/10.1242/dev.01597
30 Takahashi J, Ohbayashi A, Oginuma M, Saito D, Mochizuki A, Saga Y, Takada S (2010) Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol 342: 134-145
https://doi.org/10.1016/j.ydbio.2010.03.015
31 Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74: 1249-1254
https://doi.org/10.1086/421053
32 Wu SM, Chien KR, Mummery C (2008) Origins and fates of cardiovascular progenitor cells. Cell 132: 537-543
https://doi.org/10.1016/j.cell.2008.02.002
33 Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y (2006) Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci USA 103: 3651-3656
https://doi.org/10.1073/pnas.0508238103
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Xuemei Fu, Shouhai Wu, Bo Li, Yang Xu, Jingfeng Liu. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
[3] Feng Li, Yuanlong Ge, Dan Liu, Zhou Songyang. The role of telomere-binding modulators in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 60-70.
[4] Jinzhu Xiang, Suying Cao, Liang Zhong, Hanning Wang, Yangli Pei, Qingqing Wei, Bingqiang Wen, Haiyuan Mu, Shaopeng Zhang, Liang Yue, Genhua Yue, Bing Lim, Jianyong Han. Pluripotent stem cells secrete Activin A to improve their epiblast competency after injection into recipient embryos[J]. Protein Cell, 2018, 9(8): 717-728.
[5] Jianying Guo, Dacheng Ma, Rujin Huang, Jia Ming, Min Ye, Kehkooi Kee, Zhen Xie, Jie Na. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells[J]. Protein Cell, 2017, 8(5): 379-393.
[6] Chao Zhong, Jinfang Zhu. Transcriptional regulators dictate innate lymphoid cell fates[J]. Protein Cell, 2017, 8(4): 242-254.
[7] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[8] Jie Na,Duncan Baker,Jing Zhang,Peter W. Andrews,Ivana Barbaric. Aneuploidy in pluripotent stem cells and implications for cancerous transformation[J]. Protein Cell, 2014, 5(8): 569-579.
[9] Yan Huang,Puping Liang,Dan Liu,Junjiu Huang,Zhou Songyang. Telomere regulation in pluripotent stem cells[J]. Protein Cell, 2014, 5(3): 194-202.
[10] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[11] Tao Wang, Stephen T. Warren, Peng Jin. Toward pluripotency by reprogramming: mechanisms and application[J]. Prot Cell, 2013, 4(11): 820-832.
[12] Fei Yi, Guang-Hui Liu, Juan Carlos Izpisua Belmonte. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy[J]. Prot Cell, 2012, 3(4): 246-250.
[13] Zhao Chen, Tongbiao Zhao, Yang Xu. The genomic stability of induced pluripotent stem cells[J]. Prot Cell, 2012, 3(4): 271-277.
[14] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
[15] Yuan Jiang, Mei-Jiang Zhang, Bao-Yang Hu. Specification of functional neurons and glia from human pluripotent stem cells[J]. Prot Cell, 2012, 3(11): 818-825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed