Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (8) : 569-579    https://doi.org/10.1007/s13238-014-0073-9
REVIEW
Aneuploidy in pluripotent stem cells and implications for cancerous transformation
Jie Na1(), Duncan Baker2, Jing Zhang1, Peter W. Andrews3, Ivana Barbaric3()
1. School of Medicine, Tsinghua University, Beijing 100084, China
2. Sheffield Diagnostic Genetic Services, Sheffield Children’s Hospital, Sheffield S10 2TH, UK
3. Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
 Download: PDF(545 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation.

Keywords human pluripotent stem cells (hPSCs)      culture adaptation      aneuploidy      cancer      genetic changes     
Corresponding Author(s): Jie Na,Ivana Barbaric   
Issue Date: 27 August 2014
 Cite this article:   
Jie Na,Duncan Baker,Jing Zhang, et al. Aneuploidy in pluripotent stem cells and implications for cancerous transformation[J]. Protein Cell, 2014, 5(8): 569-579.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0073-9
https://academic.hep.com.cn/pac/EN/Y2014/V5/I8/569
1 DJ Adamah, PJ Gokhale, DJ Eastwood, E Rajpert De-Meyts, J Goepel, JR Walsh, HD Moore, PW Andrews(2006) Dysfunction of the mitotic:meiotic switch as a potential cause of neoplastic conversion of primordial germ cells. Int J Androl29: 219−227
https://doi.org/10.1111/j.1365-2605.2005.00569.x
2 S Alagaratnam, GE Lind, SM Kraggerud, RA Lothe, RI Skotheim(2011) The testicular germ cell tumour transcriptome. Int J Androl34: e133−e150; discussion e150−131
3 K Amps, PW Andrews, G Anyfantis, L Armstrong, S Avery, H Baharvand, J Baker, D Baker, MB Munoz, S Beilet al. (2011) Screening ethnically diverse human embryonic stem cells identifles a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol29: 1132−1144
https://doi.org/10.1038/nbt.2051
4 PW Andrews, DL Bronson, F Benham, S Strickland, BB Knowles(1980) A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int J Cancer26: 269−280
https://doi.org/10.1002/ijc.2910260304
5 PW Andrews, MM Matin, AR Bahrami, I Damjanov, P Gokhale, JS Draper(2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans33: 1526−1530
https://doi.org/10.1042/BST20051526
6 NB Atkin, MC Baker(1982) Speciflc chromosome change, i(12p), in testicular tumours? Lancet2: 1349
https://doi.org/10.1016/S0140-6736(82)91557-4
7 S Avery, AJ Hirst, D Baker, CY Lim, S Alagaratnam, RI Skotheim, RA Lothe, MF Pera, A Colman, P Robsonet al. (2013) BCL-XL mediates the strong selective advantage of a 20q11.21 ampliflcation commonly found in human embryonic stem cell cultures. Stem Cell Rep1: 379−386
8 DE Baker, NJ Harrison, E Maltby, K Smith, HD Moore, PJ Shaw, PR Heath, H Holden, PW Andrews(2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol25: 207−215
https://doi.org/10.1038/nbt1285
9 I Barbaric, V Biga, PJ Gokhale, M Jones, D Stavish, A Glen, D Coca, PW Andrews(2014) Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation. Stem Cell Rep (in press)
10 KA Becker, PN Ghule, JA Therrien, JB Lian, JL Stein, AJ van Wijnen, GS Stein(2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol209: 883−893
https://doi.org/10.1002/jcp.20776
11 U Ben-David, Y Mayshar, N Benvenisty(2011) Large-scale analysis reveals acquisition of lineage-speciflc chromosomal aberrations in human adult stem cells. Cell Stem Cell9: 97−102
https://doi.org/10.1016/j.stem.2011.06.013
12 B Blum, N Benvenisty(2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle8: 3822−3830
https://doi.org/10.4161/cc.8.23.10067
13 B Blum, O Bar-Nur, T Golan-Lev, N Benvenisty(2009) The antiapoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol27: 281−287
https://doi.org/10.1038/nbt.1527
14 LH Boise, M Gonzalez-Garcia, CE Postema, L Ding, T Lindsten, LA Turka, X Mao, G Nunez, CB Thompson(1993) bcl-x, a bcl-2- related gene that functions as a dominant regulator of apoptotic cell death. Cell74: 597−608
https://doi.org/10.1016/0092-8674(93)90508-N
15 SN Brimble, X Zeng, DA Weiler, Y Luo, Y Liu, IG Lyons, WJ Freed, AJ Robins, MS Rao, TC Schulz(2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev13: 585−597
https://doi.org/10.1089/scd.2004.13.585
16 JJ Buzzard, NM Gough, JM Crook, A Colman(2004) Karyotype of human ES cells during extended culture. Nat Biotechnol22: 381−382 author reply 382
17 G Caisander, H Park, K Frej, J Lindqvist, C Bergh, K Lundin, C Hanson(2006) Chromosomal integrity maintained in flve human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res14: 131−137
https://doi.org/10.1007/s10577-006-1019-8
18 K Chatzimeletiou, EE Morrison, N Prapas, Y Prapas, AH Handyside(2005) Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identifled by confocal laser scanning microscopy. Hum Reprod20: 672−682
https://doi.org/10.1093/humrep/deh652
19 K Crasta, NJ Ganem, R Dagher, AB Lantermann, EV Ivanova, Y Pan, L Nezi, A Protopopov, D Chowdhury, D Pellman(2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature482: 53−58
https://doi.org/10.1038/nature10802
20 A de Klein, AG van Kessel, G Grosveld, CR Bartram, A Hagemeijer, D Bootsma, NK Spurr, N Heisterkamp, J Groffen, JR Stephenson(1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature300: 765−767
https://doi.org/10.1038/300765a0
21 H Dohner, S Stilgenbauer, A Benner, E Leupolt, A Krober, L Bullinger, K Dohner, M Bentz, P Lichter(2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med343: 1910−1916
https://doi.org/10.1056/NEJM200012283432602
22 JS Draper, K Smith, P Gokhale, HD Moore, E Maltby, J Johnson, L Meisner, TP Zwaka, JA Thomson, PW Andrews(2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol22: 53−54
https://doi.org/10.1038/nbt922
23 PH Duijf, R Benezra(2013) The cancer biology of whole-chromosome instability. Oncogene32: 4727−4736
https://doi.org/10.1038/onc.2012.616
24 AM Elliott, KA Elliott, A Kammesheidt(2010) High resolution array- CGH characterization of human stem cells using a stem cell focused microarray. Mol Biotechnol46: 234−242
https://doi.org/10.1007/s12033-010-9294-1
25 T Enver, S Soneji, C Joshi, J Brown, F Iborra, T Orntoft, T Thykjaer, E Maltby, K Smith, R Abu Dawudet al. (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet14: 3129−3140
https://doi.org/10.1093/hmg/ddi345
26 A Fazeli, CG Liew, MM Matin, S Elliott, LF Jeanmeure, PC Wright, H Moore, PW Andrews(2011) Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol55: 175−180
https://doi.org/10.1387/ijdb.103177af
27 E Fragouli, D Wells(2011) Aneuploidy in the human blastocyst. Cytogenet Genome Res133: 149−159
https://doi.org/10.1159/000323500
28 E Fragouli, M Lenzi, R Ross, M Katz-Jaffe, WB Schoolcraft, D Wells(2008) Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod23: 2596−2608
https://doi.org/10.1093/humrep/den287
29 E Fragouli, S Alfarawati, K Spath, S Jaroudi, J Sarasa, M Enciso, D Wells(2013) The origin and impact of embryonic aneuploidy. Hum Genet132: 1001−1013
https://doi.org/10.1007/s00439-013-1309-0
30 CE Goldring, PA Duffy, N Benvenisty, PW Andrews, U Ben-David, R Eakins, N French, NA Hanley, L Kelly, NR Kitteringhamet al. (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell8: 618−628
https://doi.org/10.1016/j.stem.2011.05.012
31 D Hanahan, RA Weinberg(2011) Hallmarks of cancer: the next generation. Cell144: 646−674
https://doi.org/10.1016/j.cell.2011.02.013
32 NJ Harrison, D Baker, PW Andrews(2007) Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl30: 275−281discussion 281
33 NJ Harrison, J Barnes, M Jones, D Baker, PJ Gokhale, PW Andrews(2009) CD30 expression reveals that culture adaptation of human embryonic stem cells can occur through differing routes. Stem cells27: 1057−1065
https://doi.org/10.1002/stem.41
34 T Hassold, P Hunt(2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet2: 280−291
https://doi.org/10.1038/35066065
35 D Herszfeld, E Wolvetang, E Langton-Bunker, TL Chung, AA Filipczyk, S Houssami, P Jamshidi, K Koh, AL Laslett, A Michalskaet al. (2006) CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol24: 351−357
https://doi.org/10.1038/nbt1197
36 AJ Holland, DW Cleveland(2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol10: 478−487
https://doi.org/10.1038/nrm2718
37 O Hovatta, M Jaconi, V Tohonen, F Bena, S Gimelli, A Bosman, F Holm, S Wyder, EM Zdobnov, O Irionet al. (2010) A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One5: e10263
https://doi.org/10.1371/journal.pone.0010263
38 J Inzunza, S Sahlen, K Holmberg, AM Stromberg, H Teerijoki, E Blennow, O Hovatta, H Malmgren(2004) Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol Hum Reprod10: 461−466
https://doi.org/10.1093/molehr/gah051
39 MJ Jones, PV Jallepalli(2012) Chromothripsis: chromosomes in crisis. Dev Cell23: 908−917
https://doi.org/10.1016/j.devcel.2012.10.010
40 KT Jones, SI Lane(2013) Molecular causes of aneuploidy in mammalian eggs. Development140: 3719−3730
https://doi.org/10.1242/dev.090589
41 JE Korkola, J Houldsworth, RS Chadalavada, AB Olshen, D Dobrzynski, VE Reuter, GJ Bosl, RS Chaganti(2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res66: 820−827
https://doi.org/10.1158/0008-5472.CAN-05-2445
42 LC Laurent, I Ulitsky, I Slavin, H Tran, A Schork, R Morey, C Lynch, JV Harness, S Lee, MJ Barreroet al. (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell8: 106−118
https://doi.org/10.1016/j.stem.2010.12.003
43 N Lefort, M Feyeux, C Bas, O Feraud, A Bennaceur-Griscelli, G Tachdjian, M Peschanski, AL Perrier(2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol26: 1364−1366
https://doi.org/10.1038/nbt.1509
44 A Maitra, DE Arking, N Shivapurkar, M Ikeda, V Stastny, K Kassauei, G Sui, DJ Cutler, Y Liu, SN Brimbleet al. (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet37: 1099−1103
https://doi.org/10.1038/ng1631
45 C Mantel, Y Guo, MR Lee, MK Kim, MK Han, H Shibayama, S Fukuda, MC Yoder, LM Pelus, KS Kimet al. (2007) Checkpointapoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood109: 4518−4527
https://doi.org/10.1182/blood-2006-10-054247
46 KI Matthaei, PW Andrews, DL Bronson(1983) Retinoic acid fails to induce differentiation in human teratocarcinoma cell lines that express high levels of a cellular receptor protein. Exp Cell Res143: 471−474
https://doi.org/10.1016/0014-4827(83)90076-9
47 Y Mayshar, U Ben-David, N Lavon, JC Biancotti, B Yakir, AT Clark, K Plath, WE Lowry, N Benvenisty(2010) Identiflcation and classiflcation of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell7: 521−531
https://doi.org/10.1016/j.stem.2010.07.017
48 B McClintock(1984) The signiflcance of responses of the genome to challenge. Science226: 792−801
https://doi.org/10.1126/science.15739260
49 MM Mitalipova, RR Rao, DM Hoyer, JA Johnson, LF Meisner, KL Jones, S Dalton, SL Stice(2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol23: 19−20
https://doi.org/10.1038/nbt0105-19
50 Mitelman (2014). Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. In: F Mitelman, B Johansson, F Mertens(eds). Accessed 2014-April-1
51 CE Murry, G Keller(2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132: 661−680
https://doi.org/10.1016/j.cell.2008.02.008
52 A Musacchio, ED Salmon(2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol8: 379−393
https://doi.org/10.1038/nrm2163
53 E Narva, R Autio, N Rahkonen, L Kong, N Harrison, D Kitsberg, L Borghese, J Itskovitz-Eldor, O Rasool, P Dvoraket al. (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol28: 371−377
https://doi.org/10.1038/nbt.1615
54 PC Nowell, DA Hungerford(1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst25: 85−109
55 V Olariu, NJ Harrison, D Coca, PJ Gokhale, D Baker, S Billings, V Kadirkamanathan, PW Andrews(2010) Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res4: 50−56
https://doi.org/10.1016/j.scr.2009.09.001
56 JW Oosterhuis, SM Castedo, B de Jong (1990) Cytogenetics, ploidy and differentiation of human testicular, ovarian and extragonadal germ cell tumours. Cancer Surv9: 320−332
57 MF Pera, J Andrade, S Houssami, B Reubinoff, A Trounson, EG Stanley, D Ward-van Oostwaard, C Mummery(2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci117: 1269−1280
https://doi.org/10.1242/jcs.00970
58 D Ronen, N Benvenisty(2012) Genomic stability in reprogramming. Curr Opin Genet Dev22: 444−449
https://doi.org/10.1016/j.gde.2012.09.003
59 JD Rowley(1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identifled by quinacrine fluorescence and Giemsa staining. Nature243: 290−293
https://doi.org/10.1038/243290a0
60 SD Schwartz, JP Hubschman, G Heilwell, V Franco-Cardenas, CK Pan, RM Ostrick, E Mickunas, R Gay, I Klimanskaya, R Lanza(2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet379: 713−720
https://doi.org/10.1016/S0140-6736(12)60028-2
61 J Sebestova, A Danylevska, L Novakova, M Kubelka, M Anger(2012) Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle11: 3011−3018
https://doi.org/10.4161/cc.21398
62 A Selmecki, A Forche, J Berman(2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science313: 367−370
https://doi.org/10.1126/science.1128242
63 A Selmecki, M Gerami-Nejad, C Paulson, A Forche, J Berman(2008) An isochromosome confers drug resistance in vivo by ampliflcation of two genes, ERG11 and TAC1. Mol Microbiol68: 624−641
https://doi.org/10.1111/j.1365-2958.2008.06176.x
64 RI Skotheim, O Monni, S Mousses, SD Fossa, OP Kallioniemi, RA Lothe, A Kallioniemi(2002) New insights into testicular germ cell tumorigenesis from gene expression proflling. Cancer Res62: 2359−2364
65 C Spits, I Mateizel, M Geens, A Mertzanidou, C Staessen, Y Vandeskelde, J Van der Elst, I Liebaers, K Sermon(2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol26: 1361−1363
https://doi.org/10.1038/nbt.1510
66 MR Stratton(2011) Exploring the genomes of cancer cells: progress and promise. Science331: 1553−1558
https://doi.org/10.1126/science.1204040
67 SM Taapken, BS Nisler, MA Newton, TL Sampsell-Barron, KA Leonhard, EM McIntire, KD Montgomery(2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol29: 313−314
https://doi.org/10.1038/nbt.1835
68 K Takahashi, K Mitsui, S Yamanaka(2003) Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature423: 541−545
https://doi.org/10.1038/nature01646
69 K Takahashi, K Tanabe, M Ohnuki, M Narita, T Ichisaka, K Tomoda, S Yamanaka(2007) Induction of pluripotent stem cells from adult human flbroblasts by deflned factors. Cell131: 861−872
https://doi.org/10.1016/j.cell.2007.11.019
70 YC Tang, BR Williams, JJ Siegel, A Amon(2011) Identiflcation of aneuploidy-selective antiproliferation compounds. Cell144: 499−512
https://doi.org/10.1016/j.cell.2011.01.017
71 SL Thompson, DA Compton(2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol188: 369−381
https://doi.org/10.1083/jcb.200905057
72 JA Thomson, J Itskovitz-Eldor, SS Shapiro, MA Waknitz, JJ Swiergiel, VS Marshall, JM Jones(1998) Embryonic stem cell lines derived from human blastocysts. Science282: 1145−1147
https://doi.org/10.1126/science.282.5391.1145
73 EM Torres, T Sokolsky, CM Tucker, LY Chan, M Boselli, MJ Dunham, A Amon(2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science317: 916−924
https://doi.org/10.1126/science.1142210
74 S Turkmen, M Riehn, E Klopocki, M Molkentin, R Reinhardt, T Burmeister(2011) A BACH2-BCL2L1 fusion gene resulting from a t(6;20)(q15;q11.2) chromosomal translocation in the lymphoma cell line BLUE-1. Genes Chromosomes Cancer50: 389−396
https://doi.org/10.1002/gcc.20863
75 E Vanneste, T Voet, C Le Caignec, M Ampe, P Konings, C Melotte, S Debrock, M Amyere, M Vikkula, F Schuitet al. (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med15: 577−583
https://doi.org/10.1038/nm.1924
76 N Wang, B Trend, DL Bronson, EE Fraley(1980) Nonrandom abnormalities in chromosome 1 in human testicular cancers. Cancer Res40: 796−802
77 TE Werbowetski-Ogilvie, M Bosse, M Stewart, A Schnerch, V Ramos-Mejia, A Rouleau, T Wynder, MJ Smith, S Dingwall, T Carteret al. (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol27: 91−97
https://doi.org/10.1038/nbt.1516
78 RH Xu, X Chen, DS Li, R Li, GC Addicks, C Glennon, TP Zwaka, JA Thomson(2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol20: 1261−1264
https://doi.org/10.1038/nbt761
79 L Yan, M Yang, H Guo, L Yang, J Wu, R Li, P Liu, Y Lian, X Zheng, J Yanet al. (2013) Single-cell RNA-Seq proflling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol20: 1131−1139
https://doi.org/10.1038/nsmb.2660
80 S Yang, G Lin, YQ Tan, D Zhou, LY Deng, DH Cheng, SW Luo, TC Liu, XY Zhou, Z Sunet al. (2008) Tumor progression of cultureadapted human embryonic stem cells during long-term culture. Genes Chromosomes Cancer47: 665−679
https://doi.org/10.1002/gcc.20574
81 G Zafarana, B Grygalewicz, AJ Gillis, LE Vissers, W van de Vliet, RJ van Gurp, H Stoop, M Debiec-Rychter, JW Oosterhuis, AG van Kesselet al. (2003) 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene22: 7695−7701
https://doi.org/10.1038/sj.onc.1207011
[1] Abhimanyu Thakur, Xiaoshan Ke, Ya-Wen Chen, Pedram Motallebnejad, Kui Zhang, Qizhou Lian, Huanhuan Joyce Chen. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics[J]. Protein Cell, 2022, 13(9): 631-654.
[2] Hui Yang, Bruce Beutler, Duanwu Zhang. Emerging roles of spliceosome in cancer and immunity[J]. Protein Cell, 2022, 13(8): 559-579.
[3] Yanmeng Li, Jianshi Jin, Fan Bai. Cancer biology deciphered by single-cell transcriptomic sequencing[J]. Protein Cell, 2022, 13(3): 167-179.
[4] Pranavi Koppula, Li Zhuang, Boyi Gan. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
[5] Yuliang Feng, Xingguo Liu, Siim Pauklin. 3D chromatin architecture and epigenetic regulation in cancer stem cells[J]. Protein Cell, 2021, 12(6): 440-454.
[6] Wei Jia, Cynthia Rajani, Hongxi Xu, Xiaojiao Zheng. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma[J]. Protein Cell, 2021, 12(5): 374-393.
[7] Abigail Wong-Rolle, Haohan Karen Wei, Chen Zhao, Chengcheng Jin. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein Cell, 2021, 12(5): 426-435.
[8] Juanjuan Yuan, Ting Cai, Xiaojun Zheng, Yangzi Ren, Jingwen Qi, Xiaofei Lu, Huihui Chen, Huizhen Lin, Zijie Chen, Mengnan Liu, Shangwen He, Qijun Chen, Siyang Feng, Yingjun Wu, Zhenhai Zhang, Yanqing Ding, Wei Yang. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLRmediated TCR recycling and signaling[J]. Protein Cell, 2021, 12(4): 240-260.
[9] Liang Xu, Peixue Li, Xue Hao, Yi Lu, Mingxian Liu, Wenqian Song, Lin Shan, Jiao Yu, Hongyu Ding, Shishuang Chen, Ailing Yang, Yi Arial Zeng, Lei Zhang, Hai Jiang. SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling[J]. Protein Cell, 2021, 12(3): 174-193.
[10] Dandan Wang, Letian Zhang, Ajin Hu, Yuxiang Wang, Yan Liu, Jing Yang, Ningning Du, Xiuli An, Congying Wu, Congrong Liu. Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance[J]. Protein Cell, 2021, 12(2): 107-127.
[11] Jing Zhang, Peter ten Dijke, Manfred Wuhrer, Tao Zhang. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer[J]. Protein Cell, 2021, 12(2): 89-106.
[12] Chengcheng Wang, Taiping Zhang, Quan Liao, Menghua Dai, Junchao Guo, Xinyu Yang, Wen Tan, Dongxin Lin, Chen Wu, Yupei Zhao. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation[J]. Protein Cell, 2021, 12(2): 128-144.
[13] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[14] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[15] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed