|
|
Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma |
Wei Jia1,2( ), Cynthia Rajani3, Hongxi Xu4, Xiaojiao Zheng1 |
1. Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2. Hong Kong Tranditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China 3. University of Hawaii Cancer Center, Honolulu, HI 96813, USA 4. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China |
|
|
Abstract Colorectal cancer (CRC) and hepatocellular carcinoma (HCC) are the second and third most common causes of death by cancer, respectively. The etiologies of the two cancers are either infectious insult or due to chronic use of alcohol, smoking, diet, obesity and diabetes. Pathological changes in the composition of the gut microbiota that lead to intestinal inflammation are a common factor for both HCC and CRC. However, the gut microbiota of the cancer patient evolves with disease pathogenesis in unique ways that are affected by etiologies and environmental factors. In this review, we examine the changes that occur in the composition of the gut microbiota across the stages of the HCC and CRC. Based on the idea that the gut microbiota are an additional “lifeline” and contribute to the tumor microenvironment, we can observe from previously published literature how the microbiota can cause a shift in the balance from normal → inflammation → diminished inflammation from early to later disease stages. This pattern leads to the hypothesis that tumor survival depends on a less proinflammatory tumor microenvironment. The differences observed in the gut microbiota composition between different disease etiologies as well as between HCC and CRC suggest that the tumor microenvironment is unique for each case.
|
Keywords
gut microbiota
colorectal cancer
hepatocellular carcinoma
|
Corresponding Author(s):
Wei Jia
|
Online First Date: 22 September 2020
Issue Date: 08 June 2021
|
|
1 |
AM Aly, A Adel, AO El-Gendy, TM Essam, RK Aziz (2016) Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog 8:42
https://doi.org/10.1186/s13099-016-0124-2
|
2 |
JC Arthur, E Perez-Chanona, M Muhlbauer, S Tomkovich, JM Uronis, TJ Fan, BJ Campbell, T Abujamel, B Dogan, AB Rogerset al. (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123
https://doi.org/10.1126/science.1224820
|
3 |
HL Barrett, LF Gomez-Arango, SA Wilkinson, HD McIntyre, LK Callaway, M Morrison, M Dekker Nitert (2018) A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients 10:890
https://doi.org/10.3390/nu10070890
|
4 |
H Bernstein, C Bernstein, CM Payne, K Dvorakova, H Garewal (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589:47–65
https://doi.org/10.1016/j.mrrev.2004.08.001
|
5 |
C Bernstein, H Holubec, AK Bhattacharyya, H Nguyen, CM Payne, B Zaitlin, H Bernstein(2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871
https://doi.org/10.1007/s00204-011-0648-7
|
6 |
S Bluemel, L Wang, C, Kuelbs K Moncera, M Torralba, H Singh, DE Fouts, B Schnabl (2019) Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 14:1–11
https://doi.org/10.1080/19490976.2019.1595300
|
7 |
A Boleij, EM Hechenbleikner, AC Goodwin, R Badani, EM Stein, MG Lazarev, B Ellis, KC Carroll, E Albesiano, EC Wicket al. (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 60:208–215
https://doi.org/10.1093/cid/ciu787
|
8 |
B Chaucer, N Smith, D Beatty, M Yadav (2018) Multiple hepatic abscess from parvimonas micra: an emerging gastrointestinal microbe. ACG Case Rep J 5:e70
https://doi.org/10.14309/crj.2018.70
|
9 |
Y Chen, J Guo, G Qian, D Fang, D Shi, L Guo, L Li (2015) Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol 30:1429–1437
https://doi.org/10.1111/jgh.12932
|
10 |
K Chen, J Ma, X Jia, W Ai, Z Ma, Q Pan (2019) Advancing the understanding of NAFLD to hepatocellular carcinoma development: from experimental models to humans. Biochim Biophys Acta Rev Cancer 1871:117–125
https://doi.org/10.1016/j.bbcan.2018.11.005
|
11 |
MD Chow, YH Lee, GL Guo (2017) The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 56:34–44
https://doi.org/10.1016/j.mam.2017.04.004
|
12 |
H Chu, Y Duan, L Yang, B Schnabl (2019) Small metabolites, possible big changes: a microbiota-centered view of nonalcoholic fatty liver disease. Gut 68:359–370
https://doi.org/10.1136/gutjnl-2018-316307
|
13 |
S, Coppenhagen-Glazer A Sol, J, Abed R, Naor X Zhang, YW Han, G Bachrach (2015) Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun 83:1104–1113
https://doi.org/10.1128/IAI.02838-14
|
14 |
C Cosseau, DA Devine, E Dullaghan, JL Gardy, A Chikatamarla, S Gellatly, LL Yu, J Pistolic, R Falsafi, J Tagget al. (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175
https://doi.org/10.1128/IAI.00188-08
|
15 |
Z Dai, OO Coker, G Nakatsu, WKK Wu, L Zhao, Z Chen, FKL Chan, K Kristiansen, JJY Sung, SH Wonget al. (2018) Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 6:70
https://doi.org/10.1186/s40168-018-0451-2
|
16 |
V De Simone, F, Pallone G, Monteleone C Stolfi (2013) Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology 2: e26617
https://doi.org/10.4161/onci.26617
|
17 |
V De Simone, E Franze, G Ronchetti, A, Colantoni MC Fantini, D Di Fusco, GS Sica, P Sileri, TT MacDonald, F Palloneet al. (2015) Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34:3493–3503
https://doi.org/10.1038/onc.2014.286
|
18 |
CH Dejong, MC van de Poll, PB Soeters, R Jalan, SW Olde Damink (2007) Aromatic amino acid metabolism during liver failure. J Nutr 137:1579S–1585S
https://doi.org/10.1093/jn/137.6.1579S
|
19 |
E Dekker, PJ Tanis, JLA Vleugels, PM Kasi, MB Wallace (2019) Colorectal cancer. Lancet 394:1467–1480
https://doi.org/10.1016/S0140-6736(19)32319-0
|
20 |
J Despres, E Forano, P Lepercq, S Comtet-Marre, G Jubelin, C Chambon, CJ Yeoman, ME Berg Miller, CJ Fields, E Martenset al. (2016) Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17:326
https://doi.org/10.1186/s12864-016-2680-8
|
21 |
Q Feng, S Liang, H Jia, A Stadlmayr, L, Tang Z Lan, D Zhang, H Xia, X Xu, Z Jieet al.(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6:6528
https://doi.org/10.1038/ncomms7528
|
22 |
DM Ferreira, MB Afonso, PM Rodrigues, AL Simao, DM Pereira, PM Borralho, CM Rodrigues, RE Castro (2014) c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver . Mol Cell Biol 34:1100–1120
https://doi.org/10.1128/MCB.00420-13
|
23 |
Y Furusawa, Y Obata, S Fukuda, TA Endo, G Nakato, D Takahashi, Y Nakanishi, C Uetake, K Kato, T Katoet al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450
https://doi.org/10.1038/nature12721
|
24 |
J George, N Pera, N Phung, I Leclercq, J Yun Hou, G Farrell (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39:756–764
https://doi.org/10.1016/S0168-8278(03)00376-3
|
25 |
L Giloteaux, JK Goodrich, WA Walters, SM Levine, RE Ley, MR Hanson (2016) Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome . Microbiome 4:30
https://doi.org/10.1186/s40168-016-0171-4
|
26 |
KL Greathouse, CC Harris, SJ Bultman (2015) Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab 21:9–10
https://doi.org/10.1016/j.cmet.2014.12.016
|
27 |
W Guo, HY Tan, N Wang, X Wang, Y Feng (2018) Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation. Cancer Manag Res 10:715–734
https://doi.org/10.2147/CMAR.S156837
|
28 |
C Gur, Y Ibrahim, B Isaacson, R Yamin, J Abed, M Gamliel, J, Enk Y Bar-On, N Stanietsky-Kaynan, S Coppenhagen-Glazeret al. (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355
https://doi.org/10.1016/j.immuni.2015.01.010
|
29 |
B Heidrich, M Vital, I Plumeier, N Doscher, S Kahl, J Kirschner, S Ziegert, P, Solbach H Lenzen, A Potthoffet al.(2018) Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int 38:50–58
https://doi.org/10.1111/liv.13485
|
30 |
AA Hibberd, A Lyra, AC Ouwehand, P Rolny, H Lindegren, L Cedgard, Y Wettergren (2017) Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4:e000145
https://doi.org/10.1136/bmjgast-2017-000145
|
31 |
T Inoue, J, Nakayama K Moriya, H Kawaratani, R Momoda, K Ito, E Iio, S Nojiri, K Fujiwara, M Yonedaet al. (2018) Gut dysbiosis associated with hepatitis C virus infection. Clin Infect Dis 67:869–877
https://doi.org/10.1093/cid/ciy205
|
32 |
K Kameyama, K Itoh (2014) Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:427–430
https://doi.org/10.1264/jsme2.ME14054
|
33 |
G Kim, F Deepinder, W Morales, L Hwang, S Weitsman, C Chang, R, Gunsalus M Pimentel(2012) Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci 57:3213–3218
https://doi.org/10.1007/s10620-012-2197-1
|
34 |
V Koliaraki, M Pasparakis, G Kollias (2015) IKKbeta in intestinal mesenchymal cells promotes initiation of colitis-associated cancer . J Exp Med 212:2235–2251
https://doi.org/10.1084/jem.20150542
|
35 |
O Krenkel, F Tacke (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321
https://doi.org/10.1038/nri.2017.11
|
36 |
AJ La Reau, G Suen (2018) The Ruminococci: key symbionts of the gut ecosystem. J Microbiol 56:199–208
https://doi.org/10.1007/s12275-018-8024-4
|
37 |
SL La Rosa, ML Leth, L Michalak, ME Hansen, NA Pudlo, R Glowacki, G, Pereira CT Workman , MO Arntzen, PB Popeet al. (2019) The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun 10:905
https://doi.org/10.1038/s41467-019-08812-y
|
38 |
S Leclercq, S Matamoros, PD Cani, AM Neyrinck, F Jamar, P Starkel, K Windey, V Tremaroli, F, Backhed K Verbekeet al. (2014) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 111:E4485–4493
https://doi.org/10.1073/pnas.1415174111
|
39 |
J Li, BZ Stanger (2019) The tumor as organizer model. Science 363:1038–1039
https://doi.org/10.1126/science.aau9861
|
40 |
L, Lin A Liu, Z Peng, HJ Lin, PK Li, C Li, J Lin (2011) STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res 71:7226–7237
https://doi.org/10.1158/0008-5472.CAN-10-4660
|
41 |
Q Liu, F Li, Y Zhuang, J Xu, J Wang, X Mao, Y, Zhang X Liu (2019) Alteration in gut microbiota associated with hepatitis B and nonhepatitis virus related hepatocellular carcinoma. Gut Pathog 11:1
https://doi.org/10.1186/s13099-018-0281-6
|
42 |
X, Liu Y Cheng, L Shao, Z Ling (2020) Alterations of the predominant fecal microbiota and disruption of the gut mucosal barrier in patients with early-stage colorectal cancer. Biomed Res Int 2020:2948282
https://doi.org/10.1155/2020/2948282
|
43 |
AG Long, ET Lundsmith, KE Hamilton (2017) Inflammation and colorectal cancer. Curr Colorectal Cancer Rep 13:341–351
https://doi.org/10.1007/s11888-017-0373-6
|
44 |
TM Loo, F Kamachi, Y Watanabe, S Yoshimoto, H Kanda, Y Arai, Y Nakajima-Takagi, A Iwama, T Koga, Y Sugimotoet al. (2017) Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 7:522–538
https://doi.org/10.1158/2159-8290.CD-16-0932
|
45 |
LR Lopetuso, F Scaldaferri, V Petito, A Gasbarrini (2013) Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5:23
https://doi.org/10.1186/1757-4749-5-23
|
46 |
CA Lozupone, JI Stombaugh, JI Gordon, JK Jansson, R Knight (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230
https://doi.org/10.1038/nature11550
|
47 |
S Mizutani, T Yamada, S Yachida (2020) Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 111:766–773
https://doi.org/10.1111/cas.14298
|
48 |
KB Myant, P Cammareri, EJ McGhee, RA Ridgway, DJ Huels, JB Cordero, S Schwitalla, G Kalna, EL Ogg, D Athineoset al. (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12:761–773
https://doi.org/10.1016/j.stem.2013.04.006
|
49 |
G Nakatsu, X Li, H Zhou, J Sheng, SH Wong, WK Wu, SC Ng, H Tsoi, Y, Dong N Zhanget al. (2015) Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 6:8727
https://doi.org/10.1038/ncomms9727
|
50 |
A O’Callaghan, D van Sinderen (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925
https://doi.org/10.3389/fmicb.2016.00925
|
51 |
N Ohtani, N Kawada (2019) Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: a special focus on the gut microbiota relationship. Hepatol Commun 3:456–470
https://doi.org/10.1002/hep4.1331
|
52 |
HW Pan, LT Du, W Li, YM Yang, Y Zhang, CX Wang (2020) Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res Microbiol 1:12.
https://doi.org/10.1016/j.resmic.2020.01.001
|
53 |
CH Park, CS Eun, DS Han (2018) Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest Res 16:338–345
https://doi.org/10.5217/ir.2018.16.3.338
|
54 |
M Patel, MI Shariff, NG Ladep, AV Thillainayagam, HC Thomas, SA Khan, SD Taylor-Robinson (2012) Hepatocellular carcinoma: diagnostics and screening. J Eval Clin Pract 18:335–342
https://doi.org/10.1111/j.1365-2753.2010.01599.x
|
55 |
KB Pedersen, CF Pulliam, A Patel, F, Del Piero TTN Watanabe, UD Wankhade, K Shankar, C Hicks, MJ Ronis (2019) Liver tumorigenesis is promoted by a high saturated fat diet specifically in male mice and is associated with hepatic expression of the proto-oncogene Agap2 and enrichment of the intestinal microbiome with Coprococcus. Carcinogenesis 40:349–359
https://doi.org/10.1093/carcin/bgy141
|
56 |
C, Petersen JL Round (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033
https://doi.org/10.1111/cmi.12308
|
57 |
CW Png, SK Linden, KS Gilshenan, EG Zoetendal, CS McSweeney, LI Sly, MA McGuckin, TH Florin (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428
https://doi.org/10.1038/ajg.2010.281
|
58 |
NT Porter, AS Luis, EC Martens (2018) Bacteroides thetaiotaomicron. Trends Microbiol 26:966–967
https://doi.org/10.1016/j.tim.2018.08.005
|
59 |
SG Rao, JG Jackson (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2:676–687
https://doi.org/10.1016/j.trecan.2016.10.001
|
60 |
DC Rapozo, C, Bernardazzi HS de Souza (2017) Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol 23:2124–2140
https://doi.org/10.3748/wjg.v23.i12.2124
|
61 |
FE Rey, JJ Faith, J Bain, MJ Muehlbauer, RD Stevens, CB Newgard, JI Gordon (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090
https://doi.org/10.1074/jbc.M110.117713
|
62 |
JM Ridlon, DJ Kang, PB Hylemon (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259
https://doi.org/10.1194/jlr.R500013-JLR200
|
63 |
F Rodier, J Campisi (2011) Four faces of cellular senescence. J Cell Biol 192:547–556
https://doi.org/10.1083/jcb.201009094
|
64 |
MR Rubinstein, X Wang, W Liu, Y, Hao G Cai, YW Han (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206
https://doi.org/10.1016/j.chom.2013.07.012
|
65 |
S Saitoh, S Noda, Y, Aiba A Takagi, M Sakamoto, Y Benno, Y Koga (2002) Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol 9:54–59
https://doi.org/10.1128/CDLI.9.1.54-59.2002
|
66 |
M Sakamoto, A Takagaki, K Matsumoto, Y, Kato K Goto , Y Benno (2009) Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol 59:1748–1753
https://doi.org/10.1099/ijs.0.007674-0
|
67 |
BK Sandhu, SM McBride (2018) Clostridioides difficile. Trends Microbiol 26:1049–1050
https://doi.org/10.1016/j.tim.2018.09.004
|
68 |
KJP Schwenger, L Chen, A Chelliah, HE Da Silva, A Teterina, EM Comelli, A Taibi, BM Arendt, S Fischer, JP Allard (2018) Markers of activated inflammatory cells are associated with disease severity and intestinal microbiota in adults with nonalcoholic fatty liver disease. Int J Mol Med 42:2229–2237
https://doi.org/10.3892/ijmm.2018.3800
|
69 |
S Schwitalla, AA Fingerle, P Cammareri, T Nebelsiek, SI Goktuna, PK Ziegler, O Canli, J Heijmans, DJ Huels, G Moreauxet al. (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38
https://doi.org/10.1016/j.cell.2012.12.012
|
70 |
C Soeiro, IR Quilici, A Legoff, MB Oussalah, M Morin, C Alauzet, A Charmillon (2019 ) Hepatic abscess due to Dialister pneumosintes—a case report. Anaerobe 59:35–37
https://doi.org/10.1016/j.anaerobe.2019.05.006
|
71 |
LK Stenman, R Holma, A Eggert, R Korpela (2013) A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 304:G227–234
https://doi.org/10.1152/ajpgi.00267.2012
|
72 |
K Takeshita, S Mizuno, Y Mikami, T Sujino, K Saigusa, K Matsuoka, M Naganuma, T Sato, T Takada, H Tsujiet al. (2016) A single species of Clostridium Subcluster XIVa decreased in ulcerative colitis patients. Inflamm Bowel Dis 22:2802–2810
https://doi.org/10.1097/MIB.0000000000000972
|
73 |
VR Thota, S, Dacha A Natarajan, J Nerad (2011) Eggerthella lenta bacteremia in a Crohn’s disease patient after ileocecal resection. Fut Microbiol 6:595–597
https://doi.org/10.2217/fmb.11.31
|
74 |
TA Ullman, SH Itzkowitz (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816
https://doi.org/10.1053/j.gastro.2011.01.057
|
75 |
B Upadhyaya, L McCormack, AR Fardin-Kia, R Juenemann, S Nichenametla, J Clapper, B Specker, M Dey (2016) Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep 6:28797
https://doi.org/10.1038/srep28797
|
76 |
B van den Bogert, M Meijerink, EG Zoetendal, JM Wells, M Kleerebezem (2014) Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota . PLoS ONE 9:e114277
https://doi.org/10.1371/journal.pone.0114277
|
77 |
N Voreades, A Kozil, TL Weir (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494
https://doi.org/10.3389/fmicb.2014.00494
|
78 |
J Wang, Y, Wang X Zhang, J Liu, Q Zhang, Y Zhao, J, Peng Q Feng, J, Dai S Sun et al (2017) Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Front Microbiol 8:2222
https://doi.org/10.3389/fmicb.2017.02222
|
79 |
K Wang, M Liao, N Zhou, L Bao, K Ma, Z Zheng, Y, Wang C Liu, W Wang, J Wanget al.(2019) Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 26(222–235):e225
https://doi.org/10.1016/j.celrep.2018.12.028
|
80 |
HM Wexler (2007) Bacteroides: the good, the bad, and the nittygritty. Clin Microbiol Rev 20:593–621
https://doi.org/10.1128/CMR.00008-07
|
81 |
JM Wong, R de Souza, CW Kendall, A Emam, DJ Jenkins (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243
https://doi.org/10.1097/00004836-200603000-00015
|
82 |
SH Wong, L Zhao, X Zhang, G Nakatsu, J, Han W Xu, X Xiao, TNY Kwong, H Tsoi, WKK Wuet al. (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153(1621–1633):e1626
https://doi.org/10.1016/S0016-5085(17)30864-8
|
83 |
P Wu, D Wu, C Ni, J Ye, W Chen, G Hu, Z Wang, C Wang, Z Zhang, W Xiaet al. (2014a) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40:785–800
https://doi.org/10.1016/j.immuni.2014.03.013
|
84 |
YJ Wu, MY Xu, LG Lu (2014b) Clinical advances in fibrosis progression of chronic hepatitis B and C. J Clin Transl Hepatol 2:222–227
|
85 |
F Wu, X Guo, J Zhang, M Zhang, Z Ou, Y Peng (2017) Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med 14:3122–3126
https://doi.org/10.3892/etm.2017.4878
|
86 |
M Wu, P Li, Y An, J Ren, D Yan, J Cui, D Li, M Li, M Wang, G Zhong (2019) Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol Res 150:104489
https://doi.org/10.1016/j.phrs.2019.104489
|
87 |
RJ Xavier, DK Podolsky (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434
https://doi.org/10.1038/nature06005
|
88 |
G Xie, X Wang, F Huang, A Zhao, W Chen, J Yan, Y, Zhang S Lei, K, Ge X Zhenget al.(2016a) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139:1764–1775
https://doi.org/10.1002/ijc.30219
|
89 |
G, Xie X Wang, P Liu, R Wei, W Chen, C Rajani, BY Hernandez, R Alegado, B Dong, D Liet al. (2016b) Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7:19355–19366
https://doi.org/10.18632/oncotarget.8466
|
90 |
YH Xie, QY Gao, GX Cai, XM Sun, XM Sun, TH Zou, HM Chen, SY Yu, YW Qiu, WQ Guet al. (2017) Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. EBioMedicine 25:32–40
https://doi.org/10.1016/j.ebiom.2017.10.005
|
91 |
S Yachida, S Mizutani, H Shiroma, S Shiba, T Nakajima, T Sakamoto, H Watanabe, K Masuda, Y, Nishimoto M Kuboet al. (2019) Metagenomic and metabolomic analyses reveal distinct stagespecific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25:968–976
https://doi.org/10.1038/s41591-019-0458-7
|
92 |
T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarshethet al. (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170(548–563):e516
https://doi.org/10.1016/j.cell.2017.07.008
|
93 |
Y Zeng, S Chen, Y, Fu W Wu, T Chen, J Chen, B Yang, Q Ou (2020) Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J Viral Hepat 27:143–155
https://doi.org/10.1111/jvh.13216
|
94 |
Z Zhang, H Zhai, J Geng, R Yu, H Ren, H Fan, P Shi (2013) Largescale survey of gut microbiota associated with MHE Via 16S rRNA-based pyrosequencing. Am J Gastroenterol 108:1601–1611
https://doi.org/10.1038/ajg.2013.221
|
95 |
Y Zhang, X Yu, E Yu, N Wang, Q Cai, Q Shuai, F, Yan L Jiang, H Wang, J Liuet al. (2018) Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study. BMC Microbiol 18:92
https://doi.org/10.1186/s12866-018-1232-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|