|
|
|
An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope |
Zezhong Liu1, Wei Xu1, Zhenguo Chen1, Wangjun Fu2, Wuqiang Zhan1, Yidan Gao1, Jie Zhou1, Yunjiao Zhou1, Jianbo Wu1, Qian Wang1, Xiang Zhang1, Aihua Hao1, Wei Wu1, Qianqian Zhang1, Yaming Li1, Kaiyue Fan2, Ruihong Chen2, Qiaochu Jiang1, Christian T. Mayer3, Till Schoofs4, Youhua Xie1, Shibo Jiang1, Yumei Wen1, Zhenghong Yuan1( ), Kang Wang2( ), Lu Lu1( ), Lei Sun1( ), Qiao Wang1( ) |
1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People’s Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, China 2. CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 3. Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA 4. GSK Vaccines, 1300 Wavre, Belgium |
|
|
|
|
Abstract New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recog-nizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
|
| Keywords
SARS-CoV-2
neutralizing antibody
receptor-binding domain
XG014
antibody-dependent cell-cell fusion
|
|
Corresponding Author(s):
Zhenghong Yuan,Kang Wang,Lu Lu,Lei Sun,Qiao Wang
|
| About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
|
Online First Date: 23 November 2021
Issue Date: 09 August 2022
|
|
| 1 |
PV Afonine, BK Poon, RJ Read, OV Sobolev, TC Terwilliger, A Urzhumtsev, PD Adams(2018) Real-space refinement in PHENIX for cryo-EM and crystallography . Acta Crystallogr D Struct Biol 74:531–544
https://doi.org/10.1107/S2059798318006551
|
| 2 |
WB Alsoussi, JS Turner, JB Case, H Zhao, AJ Schmitz, JQ Zhou, RE Chen, T Lei, AA Rizk, KM McIntire et al.(2020) A potently neutralizing antibody protects mice against SARS-CoV-2 Infection . J Immunol 205:915–922
https://doi.org/10.4049/jimmunol.2000583
|
| 3 |
E Andreano, E Nicastri, I Paciello, P Pileri, N Manganaro, G Piccini, A Manenti, E Pantano, A Kabanova, M Troisi et al.(2021) Extremely potent human monoclonal antibodies from COVID-19 convalescent patients . Cell 184:1821–1835
https://doi.org/10.1016/j.cell.2021.02.035
|
| 4 |
AM Arvin, K Fink, MA Schmid, A Cathcart, R Spreafico, C Havenar-Daughton, A Lanzavecchia, D Corti, HW Virgin(2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2 . Nature 584:353–363
https://doi.org/10.1038/s41586-020-2538-8
|
| 5 |
LR Baden, HM El Sahly, B Essink, K Kotloff, S Frey, R Novak, D Diemert, SA Spector, N Rouphael, CB Creech et al.(2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine . N Engl J Med 384:403–416
https://doi.org/10.1056/NEJMoa2035389
|
| 6 |
CO Barnes, CA Jette, ME Abernathy, KA Dam, SR Esswein, HB Gristick, AG Malyutin, NG Sharaf, KE Huey-Tubman, YE Lee et al.(2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies . Nature 588:682–687
https://doi.org/10.1038/s41586-020-2852-1
|
| 7 |
A Baum, D Ajithdoss, R Copin, A Zhou, K Lanza, N Negron, M Ni, Y Wei, K Mohammadi, B Musser et al.(2020) REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters . Science 370:1110–1115
https://doi.org/10.1126/science.abe2402
|
| 8 |
R Bussani, E Schneider, L Zentilin, C Collesi, H Ali, L Braga, MC Volpe, A Colliva, F Zanconati, G Berlot et al.(2020) Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology . EBioMedicine 61:103104
https://doi.org/10.1016/j.ebiom.2020.103104
|
| 9 |
G Cerutti, M Rapp, Y Guo, F Bahna, J Bimela, ER Reddem, J Yu, P Wang, L Liu, Y Huang et al.(2021) Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies . Structure 29:655–663
https://doi.org/10.1016/j.str.2021.05.014
|
| 10 |
VB Chen, WB Arendall 3rd, JJ Headd, DA Keedy, RM Immormino, GJ Kapral, LW Murray, JS Richardson, DC Richardson(2010) MolProbity: all-atom structure validation for macromolecular crystallography . Acta Crystallogr D Biol Crystallogr 66:12–21
https://doi.org/10.1107/S0907444909042073
|
| 11 |
P Chen, A Nirula, B Heller, RL Gottlieb, J Boscia, J Morris, G Huhn, J Cardona, B Mocherla, V Stosor et al.(2021a) SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19 . N Engl J Med 384:229–237
https://doi.org/10.1056/NEJMoa2029849
|
| 12 |
RE Chen, X Zhang, JB Case, ES Winkler, Y Liu, LA VanBlargan, J Liu, JM Errico, X Xie, N Suryadevara et al.(2021b) Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies . Nat Med 27:717–726
|
| 13 |
KS Corbett, B Flynn, KE Foulds, JR Francica, S Boyoglu-Barnum, AP Werner, B Flach, S O’Connell, KW Bock, M Minai et al.(2020) Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates . N Engl J Med 383:1544–1555
https://doi.org/10.1056/NEJMoa2024671
|
| 14 |
G Dagotto, J Yu, DH Barouch(2020) Approaches and challenges in SARS-CoV-2 vaccine development . Cell Host Microbe 28:364–370
https://doi.org/10.1016/j.chom.2020.08.002
|
| 15 |
W Dejnirattisai, D Zhou, HM Ginn, HME Duyvesteyn, P Supasa, JB Case, Y Zhao, TS Walter, AJ Mentzer, C Liu et al.(2021) The antigenic anatomy of SARS-CoV-2 receptor binding domain . Cell 184:2183–2200
https://doi.org/10.1016/j.cell.2021.02.032
|
| 16 |
L Du, Y He, Y Zhou, S Liu, BJ Zheng, S Jiang(2009) The spike protein of SARS-CoV–a target for vaccine and therapeutic development . Nat Rev Microbiol 7:226–236
https://doi.org/10.1038/nrmicro2090
|
| 17 |
P Emsley, B Lohkamp, WG Scott, K Cowtan(2010) Features and development of Coot . Acta Crystallogr D Biol Crystallogr 66:486–501
https://doi.org/10.1107/S0907444910007493
|
| 18 |
Q Gao, L Bao, H Mao, L Wang, K Xu, M Yang, Y Li, L Zhu, N Wang, Z Lv et al.(2020) Development of an inactivated vaccine candidate for SARS-CoV-2 . Science 369:77–81
https://doi.org/10.1126/science.abc1932
|
| 19 |
AJ Greaney, AN Loes, KHD Crawford, TN Starr, KD Malone, HY Chu, JD Bloom(2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies . Cell Host Microbe 29:463–476
https://doi.org/10.1016/j.chom.2021.02.003
|
| 20 |
A-TL-CS Group, JD Lundgren, B Grund, CE Barkauskas, TL Holland, RL Gottlieb, U Sandkovsky, SM Brown, KU Knowlton, WH Self et al.(2021) A neutralizing monoclonal antibody for hospitalized patients with Covid-19 . N Engl J Med 384:905–914
https://doi.org/10.1056/NEJMoa2033130
|
| 21 |
ND Grubaugh, EB Hodcroft, JR Fauver, AL Phelan, M Cevik(2021) Public health actions to control new SARS-CoV-2 variants . Cell 184:1127–1132
https://doi.org/10.1016/j.cell.2021.01.044
|
| 22 |
RK Gupta(2021) Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol 21:340–341
https://doi.org/10.1038/s41577-021-00556-5
|
| 23 |
WT Harvey, AM Carabelli, B Jackson, RK Gupta, EC Thomson, EM Harrison, C Ludden, R Reeve, A Rambaut, C-GU Consortium et al.(2021) SARS-CoV-2 variants, spike mutations and immune escape . Nat Rev Microbiol 19:409–424
https://doi.org/10.1038/s41579-021-00573-0
|
| 24 |
R Henderson, RJ Edwards, K Mansouri, K Janowska, V Stalls, SMC Gobeil, M Kopp, D Li, R Parks, AL Hsu et al.(2020) Controlling the SARS-CoV-2 spike glycoprotein conformation . Nat Struct Mol Biol 27:925–933
https://doi.org/10.1038/s41594-020-0479-4
|
| 25 |
HM Horton, MJ Bernett, E Pong, M Peipp, S Karki, SY Chu, JO Richards, I Vostiar, PF Joyce, R Repp et al.(2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia . Cancer Res 68:8049–8057
https://doi.org/10.1158/0008-5472.CAN-08-2268
|
| 26 |
YJ Hou, S Chiba, P Halfmann, C Ehre, M Kuroda, KH Dinnon 3rd, SR Leist, A Schafer, N Nakajima, K Takahashi et al.(2020) SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo . Science 370:1464–1468
https://doi.org/10.1126/science.abe8499
|
| 27 |
A Kucukelbir, FJ Sigworth, HD Tagare(2014) Quantifying the local resolution of cryo-EM density maps . Nat Methods 11:63–65
https://doi.org/10.1038/nmeth.2727
|
| 28 |
PA Koenig, H Das, H Liu, BM Kummerer, FN Gohr, LM Jenster, LDJ Schiffelers, YM Tesfamariam, M Uchima, JD Wuerth et al.(2021) Structure-guided multivalent nanobodies block SARSCoV-2 infection and suppress mutational escape . Science.
https://doi.org/10.1126/science.abe6230
|
| 29 |
B Korber, WM Fischer, S Gnanakaran, H Yoon, J Theiler, W Abfalterer, N Hengartner, EE Giorgi, T Bhattacharya, B Foley et al.(2020) Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus . Cell 182:812–827
https://doi.org/10.1016/j.cell.2020.06.043
|
| 30 |
F Krammer(2020) SARS-CoV-2 vaccines in development . Nature 586:516–527
https://doi.org/10.1038/s41586-020-2798-3
|
| 31 |
MM Lamers, J Beumer, J van der Vaart, K Knoops, J Puschhof, TI Breugem, RBG Ravelli, J Paul van Schayck, AZ Mykytyn, HQ Duimel et al.(2020) SARS-CoV-2 productively infects human gut enterocytes . Science 369:50–54
https://doi.org/10.1126/science.abc1669
|
| 32 |
L Liu, P Wang, MS Nair, J Yu, M Rapp, Q Wang, Y Luo, JF Chan, V Sahi, A Figueroa et al.(2020a) Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike . Nature 584:450–456
https://doi.org/10.1038/s41586-020-2571-7
|
| 33 |
Z Liu, W Xu, S Xia, C Gu, X Wang, Q Wang, J Zhou, Y Wu, X Cai, D Qu et al.(2020b) RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response . Signal Transduct Target Ther 5:282
https://doi.org/10.1038/s41392-020-00402-5
|
| 34 |
Z Liu, LA VanBlargan, LM Bloyet, PW Rothlauf, RE Chen, S Stumpf, H Zhao, JM Errico, ES Theel, MJ Liebeskind et al.(2021) Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization . Cell Host Microbe 29:477–488
https://doi.org/10.1016/j.chom.2021.01.014
|
| 35 |
J Lopez Bernal, N Andrews, C Gower, E Gallagher, R Simmons, S Thelwall, J Stowe, E Tessier, N Groves, G Dabrera et al.(2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant . N Engl J Med 385:585–594
https://doi.org/10.1056/NEJMoa2108891
|
| 36 |
N Lurie, M Saville, R Hatchett, J Halton(2020) Developing Covid-19 vaccines at pandemic speed . New Engl J Med 382:1969–1973
https://doi.org/10.1056/NEJMp2005630
|
| 37 |
DN Mastronarde(2005) Automated electron microscope tomography using robust prediction of specimen movements . J Struct Biol 152:36–51
https://doi.org/10.1016/j.jsb.2005.07.007
|
| 38 |
SA Madhi, V Baillie, CL Cutland, M Voysey, AL Koen, L Fairlie, SD Padayachee, K Dheda, SL Barnabas, QE Bhorat et al.(2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant . N Engl J Med 384:1885–1898
https://doi.org/10.1056/NEJMoa2102214
|
| 39 |
NB Mercado, R Zahn, F Wegmann, C Loos, A Chandrashekar, J Yu, J Liu, L Peter, K McMahan, LH Tostanoski et al.(2020) Single- shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques . Nature 586:583–588
https://doi.org/10.1038/s41586-020-2607-z
|
| 40 |
EF Pettersen, TD Goddard, CC Huang, GS Couch, DM Greenblatt, EC Meng, TE Ferrin(2004) UCSF Chimera–a visualization system for exploratory research and analysis . J Comput Chem 25:1605–1612
https://doi.org/10.1002/jcc.20084
|
| 41 |
J Pallesen, N Wang, KS Corbett, D Wrapp, RN Kirchdoerfer, HL Turner, CA Cottrell, MM Becker, L Wang, W Shi et al.(2017) Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen . Proc Natl Acad Sci USA 114:E7348–E7357
https://doi.org/10.1073/pnas.1707304114
|
| 42 |
D Pinto, YJ Park, M Beltramello, AC Walls, MA Tortorici, S Bianchi, S Jaconi, K Culap, F Zatta, A De Marco et al.(2020) Crossneutralization of SARS-CoV-2 by a human monoclonal SARSCoV antibody . Nature 583:290–295
https://doi.org/10.1038/s41586-020-2349-y
|
| 43 |
D Planas, D Veyer, A Baidaliuk, I Staropoli, F Guivel-Benhassine, MM Rajah, C Planchais, F Porrot, N Robillard, J Puech et al.(2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization . Nature 596:276–280
https://doi.org/10.1038/s41586-021-03777-9
|
| 44 |
JA Plante, Y Liu, J Liu, H Xia, BA Johnson, KG Lokugamage, X Zhang, AE Muruato, J Zou, CR Fontes-Garfias et al.(2021) Spike mutation D614G alters SARS-CoV-2 fitness . Nature 592:116–121
https://doi.org/10.1038/s41586-020-2895-3
|
| 45 |
GA Poland, IG Ovsyannikova, RB Kennedy(2020) SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates . Lancet 396:1595–1606
https://doi.org/10.1016/S0140-6736(20)32137-1
|
| 46 |
DF Robbiani, C Gaebler, F Muecksch, JCC Lorenzi, Z Wang, A Cho, M Agudelo, CO Barnes, A Gazumyan, S Finkin et al.(2020) Convergent antibody responses to SARS-CoV-2 in convalescent individuals . Nature 584:437–442
https://doi.org/10.1038/s41586-020-2456-9
|
| 47 |
TF Rogers, F Zhao, D Huang, N Beutler, A Burns, WT He, O Limbo, C Smith, G Song, J Woehl et al.(2020) Isolation of potent SARSCoV-2 neutralizing antibodies and protection from disease in a small animal model . Science 369:956–963
https://doi.org/10.1126/science.abc7520
|
| 48 |
R Shi, C Shan, X Duan, Z Chen, P Liu, J Song, T Song, X Bi, C Han, L Wu et al.(2020) A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 . Nature 584:120–124
https://doi.org/10.1038/s41586-020-2381-y
|
| 49 |
TN Starr, AJ Greaney, SK Hilton, D Ellis, KHD Crawford, AS Dingens, MJ Navarro, JE Bowen, MA Tortorici, AC Walls et al.(2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding . Cell 182:1295–1310
https://doi.org/10.1016/j.cell.2020.08.012
|
| 50 |
S Su, L Du, S Jiang(2021) Learning from the past: development of safe and effective COVID-19 vaccines . Nat Rev Microbiol 19:211–219
https://doi.org/10.1038/s41579-020-00462-y
|
| 51 |
P Supasa, D Zhou, W Dejnirattisai, C Liu, AJ Mentzer, HM Ginn, Y Zhao, HME Duyvesteyn, R Nutalai, A Tuekprakhon et al.(2021) Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera . Cell 184:2201–2211
https://doi.org/10.1016/j.cell.2021.02.033
|
| 52 |
T Sztain, SH Ahn, AT Bogetti, L Casalino, JA Goldsmith, RS McCool, FL Kearns, JA McCammon, JS McLellan, LT Chong et al.(2021) A glycan gate controls opening of the SARS-CoV-2 spike protein . bioRxiv
https://doi.org/10.1101/2021.02.15.431212
|
| 53 |
H Tegally, E Wilkinson, M Giovanetti, A Iranzadeh, V Fonseca, J Giandhari, D Doolabh, S Pillay, EJ San, N Msomi et al.(2021) Detection of a SARS-CoV-2 variant of concern in South Africa . Nature 592:438–443
https://doi.org/10.1038/s41586-021-03402-9
|
| 54 |
EC Thomson, LE Rosen, JG Shepherd, R Spreafico, A da Silva Filipe, JA Wojcechowskyj, C Davis, L Piccoli, DJ Pascall, J Dillen et al.(2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity . Cell 184:1171–1187
https://doi.org/10.1016/j.cell.2021.01.037
|
| 55 |
MA Tortorici, M Beltramello, FA Lempp, D Pinto, HV Dang, LE Rosen, M McCallum, J Bowen, A Minola, S Jaconi et al.(2020) Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms . Science 370(6519):950–957
https://doi.org/10.1126/science.abe3354
|
| 56 |
H Wang, Y Zhang, B Huang, W Deng, Y Quan, W Wang, W Xu, Y Zhao, N Li, J Zhang et al.(2020a) Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2 . Cell 182:713–721
https://doi.org/10.1016/j.cell.2020.06.008
|
| 57 |
Q Wang, E Michailidis, Y Yu, Z Wang, AM Hurley, DA Oren, CT Mayer, A Gazumyan, Z Liu, Y Zhou et al.(2020b) A combination of human broadly neutralizing antibodies against Hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations . Cell Host Microbe 28:335–349
https://doi.org/10.1016/j.chom.2020.05.010
|
| 58 |
GL Wang, ZY Wang, LJ Duan, QC Meng, MD Jiang, J Cao, L Yao, KL Zhu, WC Cao, MJ Ma(2021a) Susceptibility of circulating SARS-CoV-2 variants to neutralization . N Engl J Med 384:2354–2356
https://doi.org/10.1056/NEJMc2103022
|
| 59 |
P Wang, MS Nair, L Liu, S Iketani, Y Luo, Y Guo, M Wang, J Yu, B Zhang, PD Kwong et al.(2021b) Antibody resistance of SARSCoV-2 variants B.1.351 and B.1.1.7 . Nature 593:130–135
https://doi.org/10.1038/s41586-021-03398-2
|
| 60 |
Z Wang, F Muecksch, D Schaefer-Babajew, S Finkin, C Viant, C Gaebler, HH Hoffmann, CO Barnes, M Cipolla, V Ramos et al.(2021c) Naturally enhanced neutralizing breadth against SARSCoV-2 one year after infection . Nature 595:426–431
https://doi.org/10.1038/s41586-021-03696-9
|
| 61 |
Z Wang, F Schmidt, Y Weisblum, F Muecksch, CO Barnes, S Finkin, D Schaefer-Babajew, M Cipolla, C Gaebler, JA Lieberman et al.(2021d) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants . Nature 592:616–622
https://doi.org/10.1038/s41586-021-03324-6
|
| 62 |
A Waterhouse, M Bertoni, S Bienert, G Studer, G Tauriello, R Gumienny, FT Heer, TA de Beer , C Rempfer, L Bordoli,et al.(2018) SWISS-MODEL: homology modelling of protein structures and complexes . Nucleic Acids Res 46:W296–W303
https://doi.org/10.1093/nar/gky427
|
| 63 |
DM Weinreich, S Sivapalasingam, T Norton, S Ali, H Gao, R Bhore, BJ Musser, Y Soo, D Rofail, J Im et al.(2021) REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19 . N Engl J Med 384:238–251
https://doi.org/10.1056/NEJMoa2035002
|
| 64 |
Y Weisblum, F Schmidt, F Zhang, J DaSilva, D Poston, JC Lorenzi, F Muecksch, M Rutkowska, HH Hoffmann, E Michailidis et al.(2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants . Elife 9:e61312
https://doi.org/10.7554/eLife.61312
|
| 65 |
J Wen, Y Cheng, R Ling, Y Dai, B Huang, W Huang, S Zhang, Y Jiang(2020) Antibody-dependent enhancement of coronavirus . Int J Infect Dis 100:483–489
https://doi.org/10.1016/j.ijid.2020.09.015
|
| 66 |
CK Wibmer, F Ayres, T Hermanus, M Madzivhandila, P Kgagudi, B Oosthuysen, BE Lambson, T de Oliveira, M Vermeulen, K van der Berg et al.(2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma . Nat Med 27:622–625
https://doi.org/10.1038/s41591-021-01285-x
|
| 67 |
D Wrapp, N Wang, KS Corbett, JA Goldsmith, CL Hsieh, O Abiona, BS Graham, JS McLellan(2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation . Science 367:1260–1263
https://doi.org/10.1126/science.abb2507
|
| 68 |
F Wu, R Yan, M Liu, Z Liu, Y Wang, D Luan, K Wu, Z Song, T Sun, Y Ma et al.(2020) Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis . medRxiv.
https://doi.org/10.1101/2020.10.08.20209114
|
| 69 |
S Xia, M Liu, C Wang, W Xu, Q Lan, S Feng, F Qi, L Bao, L Du, S Liu et al.(2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion . Cell Res 30:343–355
https://doi.org/10.1038/s41422-020-0305-x
|
| 70 |
X Xie, Y Liu, J Liu, X Zhang, J Zou, CR Fontes-Garfias, H Xia, KA Swanson, M Cutler, D Cooper et al.(2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera . Nat Med 27:620–621
https://doi.org/10.1038/s41591-021-01270-4
|
| 71 |
L Yurkovetskiy, X Wang, KE Pascal, C Tomkins-Tinch, TP Nyalile, Y Wang, A Baum, WE Diehl, A Dauphin, C Carbone et al.(2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant . Cell 183:739–751
https://doi.org/10.1016/j.cell.2020.09.032
|
| 72 |
D Zhou, W Dejnirattisai, P Supasa, C Liu, AJ Mentzer, HM Ginn, Y Zhao, HME Duyvesteyn, A Tuekprakhon, R Nutalai et al.(2021a) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera . Cell 184:2348–2361
https://doi.org/10.1016/j.cell.2021.02.037
|
| 73 |
Y Zhou, Z Liu, S Li, W Xu, Q Zhang, IT Silva, C Li, Y Wu, Q Jiang, Z Liu et al.(2021b) Enhancement versus neutralization by SARSCoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD . Cell Rep 34:108699
https://doi.org/10.1016/j.celrep.2021.108699
|
| 74 |
SJ Zost, P Gilchuk, JB Case, E Binshtein, RE Chen, JP Nkolola, A Schafer, JX Reidy, A Trivette, RS Nargi et al. (2020) Potently neutralizing and protective human antibodies against SARS-CoV-2 . Nature 584:443–449
https://doi.org/10.1038/s41586-020-2548-6
|
| 75 |
K Zhang(2016) Gctf: Real-time CTF determination and correction . J Struct Biol 193:1–12
https://doi.org/10.1016/j.jsb.2015.11.003
|
| 76 |
J Zivanov, T Nakane, BO Forsberg, D Kimanius, WJ Hagen, E Lindahl, SH Scheres(2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3 . Elife 7
https://doi.org/10.7554/eLife.42166
|
| 77 |
SQ Zheng, E Palovcak, JP Armache, KA Verba, Y Cheng, DA Agard. (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy . Nat Methods 14:331–332
https://doi.org/10.1038/nmeth.4193
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|