|
|
PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis |
Weili Yang1( ), Xiangyu Guo1, Zhuchi Tu1, Xiusheng Chen1, Rui Han1, Yanting Liu1, Sen Yan1, Qi Wang1, Zhifu Wang1, Xianxian Zhao1, Yunpeng Zhang2, Xin Xiong1, Huiming Yang1, Peng Yin1, Huida Wan2, Xingxing Chen1, Jifeng Guo3, Xiao-Xin Yan4, Lujian Liao2, Shihua Li1, Xiao-Jiang Li1( ) |
1. Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China 2. Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, and Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 100021, China 3. Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China 4. Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410008, China |
|
|
Abstract In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.
|
Keywords
Parkinson's disease
neurogenesis
neurodegeneration
mitochondria
non-human primates
|
Corresponding Author(s):
Weili Yang,Xiao-Jiang Li
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Online First Date: 20 December 2021
Issue Date: 14 February 2022
|
|
1 |
RS Akundi, Z Huang, J Eason, JD Pandya, L Zhi, WA Cass, PG Sullivan, H Büeler (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 6:e16038
https://doi.org/10.1371/journal.pone.0016038
|
2 |
A Al-Rumayyan, C Klein, M Alfadhel (2017) Early-onset parkinsonism: case report and review of the literature. Pediatr Neurol 67:102–106.e1
https://doi.org/10.1016/j.pediatrneurol.2015.06.005
|
3 |
G Arena, EM Valente (2017) PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. J Pathol 241:251–263
https://doi.org/10.1002/path.4815
|
4 |
AR Bentivoglio, P Cortelli, EM Valente, T Ialongo, A Ferraris, A Elia, P Montagna (2001) Phenotypic characterisation of autosomal recessive PARK6-linked parkinsonism in three unrelated Italian families. Mov Disord 16:999–1006
https://doi.org/10.1002/mds.10034
|
5 |
V Bonifati, CF Rohe, GJ Breedveld, E Fabrizio, M De Mari, C Tassorelli, A Tavella, R Marconi, DJ Nicholl, HF Chien et al (2005) Earlyonset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65:87–95
https://doi.org/10.1212/01.wnl.0000167546.39375.82
|
6 |
H Braak, CM Müller, U Rüb, H Ackermann, H Bratzke, RA De Vos, K Del Tredici (2006) Pathology associated with sporadic Parkinson’s disease—where does it end. J Neural Transm Suppl 89–97
https://doi.org/10.1007/978-3-211-45295-0_15
|
7 |
ZZ Chen, JY Wang, Y Kang, QY Yang, XY Gu, DL Zhi, L Yan, CZ Long, B Shen, YY Niu et al (2021) PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. ZoolRes 42:469–477
https://doi.org/10.24272/j.issn.2095-8137.2021.023
|
8 |
CT Chu (2019) Multiple pathways for mitophagy: a neurodegenerative conundrum for Parkinson’s disease. Neurosci Lett 697:66–71
https://doi.org/10.1016/j.neulet.2018.04.004
|
9 |
IE Clark, MW Dodson, C Jiang, JH Cao, JR Huh, JH Seol, SJ Yoo, BA Hay, M Guo (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166
https://doi.org/10.1038/nature04779
|
10 |
F Condorelli, P Salomoni, S Cotteret, V Cesi, SM Srinivasula, ES Alnemri, B Calabretta (2001) Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol 21:3025–3036
https://doi.org/10.1128/MCB.21.9.3025-3036.2001
|
11 |
O Corti, S Lesage, A Brice (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–1218
https://doi.org/10.1152/physrev.00022.2010
|
12 |
N Cummins, J Gotz (2018) Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci 75:1151–1162
https://doi.org/10.1007/s00018-017-2692-9
|
13 |
SR Datta, AM Ranger, MZ Lin, JF Sturgill, YC Ma, CW Cowan, P Dikkes, SJ Korsmeyer, ME Greenberg (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3:631–643
https://doi.org/10.1016/S1534-5807(02)00326-X
|
14 |
KD Dave, S De Silva, NP Sheth, S Ramboz, MJ Beck, C Quang, RC III Switzer, SO Ahmad, SM Sunkin, D Walker et al (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 70:190–203
https://doi.org/10.1016/j.nbd.2014.06.009
|
15 |
R de Haas, LCMW Heltzel, D Tax, P van den Broek, H Steenbreker, MM Verheij, FG Russel, AL Orr, K Nakamura, JA Smeitink et al (2019) To be or not to be pink(1): contradictory findings in an animal model for Parkinson’s disease. Brain Commun 1:fcz016
https://doi.org/10.1093/braincomms/fcz016
|
16 |
RLA de Vries, S Przedborski (2013) Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci 55:37–43
https://doi.org/10.1016/j.mcn.2012.07.008
|
17 |
S Gispert, F Ricciardi, A Kurz, M Azizov, HH Hoepken, D Becker, W Voos, K Leuner, WE Müller, AP Kudin et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e5777
https://doi.org/10.1371/journal.pone.0005777
|
18 |
C Gladkova, SL Maslen, JM Skehel, D Komander (2018) Mechanism of parkin activation by PINK1. Nature 559:410–414
https://doi.org/10.1038/s41586-018-0224-x
|
19 |
H Han, J Tan, R Wang, H Wan, Y He, X Yan, J Guo, Q Gao, J Li, S Shang et al (2020) PINK1 phosphorylates Drp 1(S616) to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 21:e48686
https://doi.org/10.15252/embr.201948686
|
20 |
L Ishihara-Paul, MM Hulihan, J Kachergus, R Upmanyu, L Warren, R Amouri, R Elango, RK Prinjha, A Soto, M Kefi et al (2008) PINK1 mutations and parkinsonism. Neurology 71:896–902
https://doi.org/10.1212/01.wnl.0000323812.40708.1f
|
21 |
T Kitada, A Pisani, DR Porter, H Yamaguchi, A Tscherter, G Martella, P Bonsi, C Zhang, EN Pothos, J Shen et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446
https://doi.org/10.1073/pnas.0702717104
|
22 |
F Koyano, K Okatsu, H Kosako, Y Tamura, E Go, M Kimura, Y Kimura, H Tsuchiya, H Yoshihara, T Hirokawa et al (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166
https://doi.org/10.1038/nature13392
|
23 |
JW Langston (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596
https://doi.org/10.1002/ana.20834
|
24 |
M Lazarou, DA Sliter, LA Kane, SA Sarraf, C Wang, JL Burman, DP Sideris, AI Fogel, RJ Youle (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314
https://doi.org/10.1038/nature14893
|
25 |
JJ Lee, A Sanchez-Martinez, AM Zarate, C Benincá, U Mayor, MJ Clague, AJ Whitworth (2018) Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol 217:1613–1622
https://doi.org/10.1083/jcb.201801044
|
26 |
H Li, S Wu, X Ma, X Li, T Cheng, Z Chen, J Wu, L Lv, L Li, L Xu et al (2021) Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 37:1271–1288
https://doi.org/10.1007/s12264-021-00732-6
|
27 |
R Marongiu, A Ferraris, T Ialongo, S Michiorri, F Soleti, F Ferrari, AE Elia, D Ghezzi, A Albanese, MC Altavista et al (2008) PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum. Hum Mutat 29:565
https://doi.org/10.1002/humu.20719
|
28 |
D Matheoud, T Cannon, A Voisin, AM Penttinen, L Ramet, AM Fahmy, C Ducrot, A Laplante, MJ Bourque, L Zhu et al (2019) Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1(-/-) mice. Nature 571:565–569
https://doi.org/10.1038/s41586-019-1405-y
|
29 |
A McInerney-Leo, DW Hadley, K Gwinn-Hardy, J Hardy (2005) Genetic testing in Parkinson’s disease. Mov Disord 20:1–10
https://doi.org/10.1002/mds.20316
|
30 |
TG McWilliams, AR Prescott, L Montava-Garriga, G Ball, F Singh, E Barini, MM Muqit, SP Brooks, IG Ganley (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab 27:439–449.e5
https://doi.org/10.1016/j.cmet.2017.12.008
|
31 |
DP Narendra, SM Jin, A Tanaka, DF Suen, CA Gautier, J Shen, MR Cookson, RJ Youle (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298
https://doi.org/10.1371/journal.pbio.1000298
|
32 |
CH O’Flanagan, C O’Neill (2014) PINK1 signalling in cancer biology. Biochim Biophys Acta 1846:590–598
https://doi.org/10.1016/j.bbcan.2014.10.006
|
33 |
K Okatsu, T Oka, M Iguchi, K Imamura, H Kosako, N Tani, M Kimura, E Go, F Koyano, M Funayama et al (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3:1016
https://doi.org/10.1038/ncomms2016
|
34 |
A Ordureau, JM Heo, DM Duda, JA Paulo, JL Olszewski, D Yanishevski, J Rinehart, BA Schulman, JW Harper (2015) Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA 112:6637–6642
https://doi.org/10.1073/pnas.1506593112
|
35 |
AM Pickrell, RJ Youle (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273
https://doi.org/10.1016/j.neuron.2014.12.007
|
36 |
W Qiu, H Zhang, A Bao, K Zhu, Y Huang, X Yan, J Zhang, C Zhong, Y Shen, J Zhou et al (2019) Standardized operational protocol for human brain banking in China. Neurosci Bull 35:270–276
https://doi.org/10.1007/s12264-018-0306-7
|
37 |
LA Scarffe, DA Stevens, VL Dawson, TM Dawson (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–332
https://doi.org/10.1016/j.tins.2014.03.004
|
38 |
J Trinh, M Farrer (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454
https://doi.org/10.1038/nrneurol.2013.132
|
39 |
Z Tu, W Yang, S Yan, A Yin, J Gao, X Liu, Y Zheng, J Zheng, Z Li, S Yang et al (2017) Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep 7:42081
https://doi.org/10.1038/srep42081
|
40 |
EM Valente, PM Abou-Sleiman, V Caputo, MM Muqit, K Harvey, S Gispert, Z Ali, D Del Turco, AR Bentivoglio, DG Healy et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160
https://doi.org/10.1126/science.1096284
|
41 |
A Voigt, LA Berlemann, KF Winklhofer (2016) The mitochondrial kinase PINK1: functions beyond mitophagy. J Neurochem 139 (Suppl):232–239
https://doi.org/10.1111/jnc.13655
|
42 |
TG Walsh, MT van den Bosch, KE Lewis, CM Williams, AW Poole (2018) Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep 8:14377
https://doi.org/10.1038/s41598-018-32716-4
|
43 |
H Wan, B Tang, X Liao, Q Zeng, Z Zhang, L Liao (2018) Analysis of neuronal phosphoproteome reveals PINK1 regulation of BAD function and cell death. Cell Death Differ 25:904–917
https://doi.org/10.1038/s41418-017-0027-x
|
44 |
X Wang, C Cao, J Huang, J Yao, T Hai, Q Zheng, X Wang, H Zhang, G Qin, J Cheng (2016) One-step generation of triple genetargeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620
https://doi.org/10.1038/srep20620
|
45 |
AJ Whitworth, LJ Pallanck (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44:47–53
https://doi.org/10.1016/j.gde.2017.01.016
|
46 |
H Xiong, D Wang, L Chen, YS Choo, H Ma, C Tang, K Xia, W Jiang, ZE Ronai, X Zhuang et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119:650–660
https://doi.org/10.1172/JCI37617
|
47 |
K Yamano, RJ Youle (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–1769
https://doi.org/10.4161/auto.24633
|
48 |
XX Yan, C Ma, AM Bao, XM Wang, WP Gai (2015) Brain banking as a cornerstone of neuroscience in China. Lancet Neurol 14:136
https://doi.org/10.1016/S1474-4422(14)70259-5
|
49 |
S Yan, Z Tu, Z Liu, N Fan, H Yang, S Yang, W Yang, Y Zhao, Z Ouyang, C Lai et al (2018) A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington’s disease. Cell 173:989–1002.e13
https://doi.org/10.1016/j.cell.2018.03.005
|
50 |
W Yang, G Wang, CE Wang, X Guo, P Yin, J Gao, Z Tu, Z Wang, J Wu, X Hu et al (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35:8345–8358
https://doi.org/10.1523/JNEUROSCI.0772-15.2015
|
51 |
S Yang, R Chang, H Yang, T Zhao, Y Hong, HE Kong, X Sun, Z Qin, P Jin, S Li et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127:2719–2724
https://doi.org/10.1172/JCI92087
|
52 |
W Yang, S Li, X-J Li (2019a) A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 14:17
https://doi.org/10.1186/s13024-019-0321-9
|
53 |
W Yang, Y Liu, Z Tu, C Xiao, S Yan, X Ma, X Guo, X Chen, P Yin, Z Yang (2019b) CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res 29:334–336
https://doi.org/10.1038/s41422-019-0142-y
|
54 |
X Zhou, J Xin, N Fan, Q Zou, J Huang, Z Ouyang, Y Zhao, B Zhao, Z Liu, S Lai et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184
https://doi.org/10.1007/s00018-014-1744-7
|
[1] |
PAC-0026-21441-LXJ_suppl_1
|
Download
|
[2] |
PAC-0026-21441-LXJ_suppl_2
|
Video
|
[3] |
PAC-0026-21441-LXJ_suppl_3
|
Video
|
[4] |
PAC-0026-21441-LXJ_suppl_4
|
Video
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|