Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2023, Vol. 14 Issue (11) : 807-823    https://doi.org/10.1093/procel/pwad029
REVIEW
Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care
Shengtao Gao, Jinfeng Wang()
College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
 Download: PDF(738 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microbes are commonly sensitive to shifts in the physiological and pathological state of their hosts, including mothers and babies. From this perspective, the microbiome may be a good indicator for diseases during pregnancy and has the potential to be used for perinatal health monitoring. This is embodied in the application of microbiome from multi body sites for auxiliary diagnosis, early prediction, prolonged monitoring, and retrospective diagnosis of pregnancy and infant complications, as well as nutrition management and health products developments of mothers and babies. Here we summarized the progress in these areas and explained that the microbiome of different body sites is sensitive to different diseases and their microbial biomarkers may overlap between each other, thus we need to make a diagnosis prudently for those diseases. Based on the microbiome variances and additional anthropometric and physical data, individualized responses of mothers and neonates to meals and probiotics/prebiotics were predictable, which is of importance for precise nutrition and probiotics/prebiotics managements and developments. Although a great deal of encouraging performance was manifested in previous studies, the efficacy could be further improved by combining multi-aspect data such as multi-omics and time series analysis in the future. This review reconceptualizes maternal and infant health from a microbiome perspective, and the knowledge in it may inspire the development of new options for the prevention and treatment of adverse pregnancy outcomes and bring a leap forward in perinatal health care.

Keywords newborn      microbiome      disease detection      pregnancy management      health care products     
Corresponding Author(s): Jinfeng Wang   
Issue Date: 14 December 2023
 Cite this article:   
Shengtao Gao,Jinfeng Wang. Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care[J]. Protein Cell, 2023, 14(11): 807-823.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwad029
https://academic.hep.com.cn/pac/EN/Y2023/V14/I11/807
1 TR Abrahamsson, HE Jakobsson, AF Andersson et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014;44:842–850.
https://doi.org/10.1111/cea.12253
2 ACOG. Diagnosis and management of preeclampsia and eclampsia. Int J Gynecol Obstet 2002;99:159–167.
https://doi.org/10.1097/00006250-200201000-00028
3 ADA. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 2018;41:S13–S27.
https://doi.org/10.2337/dc18-S002
4 M Agarwal, M Boulvain, E Coetzee et al. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract 2014;103:341–363.
https://doi.org/10.1016/j.diabres.2013.10.012
5 KA Alayande, OA Aiyegoro, TM Nengwekhulu et al. Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1. PLoS One 2020;15:e0235873.
https://doi.org/10.1371/journal.pone.0235873
6 FF Anhê, D Roy, G Pilon et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015;64:872–883.
https://doi.org/10.1136/gutjnl-2014-307142
7 IM Aragón, B Herrera-Imbroda, MI Queipo-Ortuño et al. The urinary tract microbiome in health and disease. Eur Urol focus 2018;4:128–138.
https://doi.org/10.1016/j.euf.2016.11.001
8 MB Azad, T Konya, H Maughan et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can Med Assoc J 2013;185:385–394.
https://doi.org/10.1503/cmaj.121189
9 A Bafeta, M Koh, C Riveros et al. Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review. Ann Intern Med 2018;169:240–247.
https://doi.org/10.7326/M18-0343
10 S Bashiardes, G Zilberman-Schapira, E. Elinav Use of meta-transcriptomics in microbiome research. Bioinf Biol Insights 2016;10:19–25.
https://doi.org/10.4137/BBI.S34610
11 CH Becerra-Mojica, MA Parra-Saavedra, LA Diaz-Martinez et al. Cohort profile: Colombian Cohort for the Early Prediction of Preterm Birth (COLPRET): early prediction of preterm birth based on personal medical history, clinical characteristics, vaginal microbiome, biophysical characteristics of the cervix and maternal serum biochemical markers. BMJ Open 2022;12:e060556.
https://doi.org/10.1136/bmjopen-2021-060556
12 KF Beckers, JL. Sones Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am J Physiol Heart Circ Physiol 2020;318:H1–H10.
https://doi.org/10.1152/ajpheart.00469.2019
13 S Bereswill, M Muñoz, A Fischer et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 2010;5:e15099.
https://doi.org/10.1371/journal.pone.0015099
14 SE Berry, AM Valdes, DA Drew et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020;26:964–973.
https://doi.org/10.1038/s41591-020-0934-0
15 MG Besselink, HC van Santvoort, E Buskens et al.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 2008;371:651–659.
https://doi.org/10.1016/S0140-6736(08)60207-X
16 LV Blanton, MR Charbonneau, T Salih et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016;351:add3311–add3317.
https://doi.org/10.1126/science.aad3311
17 F Blostein, D Bhaumik, E Davis et al. Evaluating the ecological hypothesis: early life salivary microbiome assembly predicts dental caries in a longitudinal case-control study. Microbiome 2022;10:240.
https://doi.org/10.1186/s40168-022-01442-5
18 M Bosheva, I Tokodi, A Krasnow et al. Infant formula with a specific blend of five human milk oligosaccharides drives the gut microbiota development and improves gut maturation markers: a randomized controlled trial. Front Nutr 2022;9:1–14.
https://doi.org/10.3389/fnut.2022.920362
19 P. Brodin Immune-microbe interactions early in life: a determinant of health and disease long term. Science 2022;376:945–950.
https://doi.org/10.1126/science.abk2189
20 SA Buffington, GV Di Prisco, TA Auchtung et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016;165:1762–1775.
https://doi.org/10.1016/j.cell.2016.06.001
21 SA Buffington, SW Dooling, M Sgritta et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021;184:1740–1756.e1716.
https://doi.org/10.1016/j.cell.2021.02.009
22 EE Canfora, JW Jocken, EE. Blaak Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11:577–591.
https://doi.org/10.1038/nrendo.2015.128
23 D Carpenter, S Dhar, LM Mitchell et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol Genet 2015;24:3472–3480.
https://doi.org/10.1093/hmg/ddv098
24 D Chan, PR Bennett, YS Lee et al. Microbial-driven preterm labour involves crosstalk between the innate and adaptive immune response. Nat Commun 2022;13:975.
https://doi.org/10.1038/s41467-022-28620-1
25 Y Chang, Y Chen, Q Zhou et al. Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Colch) 2020;134:289–302.
https://doi.org/10.1042/CS20191253
26 Y Chen, Z Li, KD Tye et al. Probiotic supplementation during human pregnancy affects the gut microbiota and immune status. Front Cell Infect Microbiol 2019;9:1–12.
https://doi.org/10.3389/fcimb.2019.00254
27 W Chen, K Wei, X He et al. Identification of uterine microbiota in infertile women receiving in vitro fertilization with and without chronic endometritis. Front Cell Dev Biol 2021;9:1–11.
https://doi.org/10.3389/fcell.2021.693267
28 I Cho, MJ. Blaser The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260–270.
https://doi.org/10.1038/nrg3182
29 TC Clarke, LI Black, BJ Stussman et al. Trends in the use of complementary health approaches among adults: United States, 2002-2012. Nat Health Stat Rep 2015;79:1–16.
30 N Connolly, J Anixt, P Manning et al. Maternal metabolic risk factors for autism spectrum disorder-an analysis of electronic medical records and linked birth data. Autism Res 2016;9:829–837.
https://doi.org/10.1002/aur.1586
31 SJC Craig, D Blankenberg, ACL Parodi et al. Child weight gain trajectories linked to oral microbiota composition. Sci Rep 2018;8:14030.
https://doi.org/10.1038/s41598-018-31866-9
32 L Crovesy, M Ostrowski, D Ferreira et al. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obesity 2017;41:1607–1614.
https://doi.org/10.1038/ijo.2017.161
33 MKW Crusell, TH Hansen, T Nielsen et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 2018;6:89.
https://doi.org/10.1186/s40168-018-0472-x
34 P Damm, ER. Mathiesen Diabetes: therapy for gestational diabetes mellitus—time for a change? Nat Rev Endocrinol 2015;11:327–328.
https://doi.org/10.1038/nrendo.2015.54
35 LA David, CF Maurice, RN Carmody et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559–563.
https://doi.org/10.1038/nature12820
36 C De Filippo, D Cavalieri, M Di Paola et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691–14696.
https://doi.org/10.1073/pnas.1005963107
37 DB DiGiulio, R Romero, HP Amogan et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 2008;3:e3056.
https://doi.org/10.1371/journal.pone.0003056
38 K Draper, C Ley, J. Parsonnet Probiotic guidelines and physician practice: a cross-sectional survey and overview of the literature. Benef Microbes 2017;8:507–519.
https://doi.org/10.3920/BM2016.0146
39 DW Dunstan, BA Kingwell, R Larsen et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012;35:976–983.
https://doi.org/10.2337/dc11-1931
40 X Fan, AV Alekseyenko, J Wu et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018;67:120–127.
https://doi.org/10.1136/gutjnl-2016-312580
41 L Feng, AS Raman, MC Hibberd et al. Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proc Natl Acad Sci USA 2020;117:2622–2633.
https://doi.org/10.1073/pnas.1918951117
42 P Ferretti, E Pasolli, A Tett et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018;24:133–145.e135.
https://doi.org/10.1016/j.chom.2018.06.005
43 JM Fettweis, MG Serrano, JP Brooks et al. The vaginal microbiome and preterm birth. Nat Med 2019;25:1012–1021.
https://doi.org/10.1038/s41591-019-0450-2
44 F Flaviani, NL Hezelgrave, T Kanno et al. Cervicovaginal microbiota and metabolome predict preterm birth risk in an ethnically diverse cohort. JCI Insight 2021;6:e149257.
https://doi.org/10.1172/jci.insight.149257
45 W Fonseca, CA Malinczak, K Fujimura et al. Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med 2021;218:e20210235.
https://doi.org/10.1084/jem.20210235
46 C Gardella, DE Riley, J Hitti et al. Identification and sequencing of bacterial rDNAs in culture-negative amniotic fluid from women in premature labor. Am J Perinatol 2004;21:319–323.
https://doi.org/10.1055/s-2004-831884
47 D Garrido, S Ruiz-Moyano, DG Lemay et al. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 2015;5:13517.
https://doi.org/10.1038/srep13517
48 EM Gibbs, JL Stock, SC McCoid et al. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest 1995;95:1512–1518.
https://doi.org/10.1172/JCI117823
49 GR Gibson, MB. Roberfroid Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125:1401–1412.
https://doi.org/10.1093/jn/125.6.1401
50 KM Godfrey, SJ Barton, S El-Heis et al.; NiPPeR Study Group. Myo-Inositol, probiotics, and micronutrient supplementation from preconception for glycemia in pregnancy: NiPPeR International Multicenter Double-Blind Randomized Controlled Trial. Diabetes Care 2021;44:1091–1099.
https://doi.org/10.2337/dc20-2515
51 LF Gomez-Arango, HL Barrett, HD McIntyre et al. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 2016;68:974–981.
https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
52 L Grześkowiak, MC Collado, C Mangani et al. Distinct gut microbiota in southeastern African and northern European infants. J Pediatr Gastroenterol Nutr 2012;54:812–816.
https://doi.org/10.1097/MPG.0b013e318249039c
53 S Gupta, TD Ross, MM Gomez et al. Investigating the dynamics of microbial consortia in spatially structured environments. Nat Commun 2020;11:2418.
https://doi.org/10.1038/s41467-020-16200-0
54 D Guyonnet, A Schlumberger, L Mhamdi et al. Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br J Nutr 2009;102:1654–1662.
https://doi.org/10.1017/S0007114509990882
55 MA Hanson, PD. Gluckman Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014;94:1027–1076.
https://doi.org/10.1152/physrev.00029.2013
56 PA Hawrylyshyn, P Bernstein, FR. Papsin Risk factors associated with infection following cesarean section. Am J Obstet Gynecol 1981;139:294–298.
https://doi.org/10.1016/0002-9378(81)90013-2
57 MK Heavey, D Durmusoglu, N Crook et al. Discovery and delivery strategies for engineered live biotherapeutic products. Trends Biotechnol 2022;40:354–369.
https://doi.org/10.1016/j.tibtech.2021.08.002
58 BM Henrick, L Rodriguez, T Lakshmikanth et al. Bifidobacteriamediated immune system imprinting early in life. Cell 2021;184:3884–3898.e11.
https://doi.org/10.1016/j.cell.2021.05.030
59 SL Hillier, J Martius, M Krohn et al. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med 1988;319:972–978.
https://doi.org/10.1056/NEJM198810133191503
60 SL Hillier, SS Witkin, MA Krohn et al. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol 1993;81:941–948.
61 HP. Himsworth Dietetic factors influencing the glucose tolerance and the activity of insulin. J Physiol 1934;81:29–48.
https://doi.org/10.1113/jphysiol.1934.sp003113
62 DJ Hoffman, TL Powell, ES Barrett et al. Developmental origins of metabolic diseases. Physiol Rev 2021;101:739–795.
https://doi.org/10.1152/physrev.00002.2020
63 TC Honeycutt, M El Khashab, RM Wardrop et al. Probiotic administration and the incidence of nosocomial infection in pediatric intensive care: a randomized placebo-controlled trial. Pediatr Crit Care Med 2007;8:452–458.
https://doi.org/10.1097/01.PCC.0000282176.41134.E6
64 L Huang, M Cai, L Li et al. Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiol 2021;21:265.
https://doi.org/10.1186/s12866-021-02327-7
65 L Huang, G Pan, Y Feng et al. Microbial network signatures of early colonizers in infants with eczema. iMeta 2023;2:1–16.
https://doi.org/10.1002/imt2.90
66 MN Huda, SM Ahmad, MJ Alam et al. Bifidobacterium abundance in early infancy and vaccine response at 2 years of age. Pediatrics 2019;143:e20181489.
https://doi.org/10.1542/peds.2018-1489
67 IADPSG. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676–682.
https://doi.org/10.2337/dc09-1848
68 J Jin, L Gao, X Zou et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts. Circul Res 2022;131:492–506.
https://doi.org/10.1161/CIRCRESAHA.122.320771
69 H Jo, SP Eckel, J-C Chen et al. Gestational diabetes mellitus, prenatal air pollution exposure, and autism spectrum disorder. Environ Int 2019;133:105110.
https://doi.org/10.1016/j.envint.2019.105110
70 EC Johns, FC Denison, JE Norman et al. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab 2018;29:743–754.
https://doi.org/10.1016/j.tem.2018.09.004
71 BR Johnson, J Hymes, R Sanozky-Dawes et al. Conserved S-layer-associated proteins revealed by exoproteomic survey of S-layer-forming Lactobacilli. Appl Environ Microbiol 2016;82:134–145.
https://doi.org/10.1128/AEM.01968-15
72 J Juan, H. Yang Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int J Env Res Public Health 2020;17:1–14.
https://doi.org/10.3390/ijerph17249517
73 NG Kapse, AS Engineer, V Gowdaman et al. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics 2019;111:921–929.
https://doi.org/10.1016/j.ygeno.2018.05.022
74 WF Kindschuh, F Baldini, MC Liu et al. Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome. Nat Microbiol 2023;8:246–259.
https://doi.org/10.1038/s41564-022-01293-8
75 O Koren, JK Goodrich, TC Cullender et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012;150:470–480.
https://doi.org/10.1016/j.cell.2012.07.008
76 P Krakowiak, CK Walker, AA Bremer et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012;129:e1121–e1128.
https://doi.org/10.1542/peds.2011-2583
77 A Kyburz, A Fallegger, X Zhang et al. Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. J Allergy Clin Immunol 2019;143:1496–1512.e1411.
https://doi.org/10.1016/j.jaci.2018.07.046
78 M Lende, A. Rijhsinghani Gestational diabetes: overview with emphasis on medical management. Int J Env Res Public Health 2020;17:1–12.
https://doi.org/10.3390/ijerph17249573
79 H Leung, X Long, Y Ni et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med 2022;14:eabk0855.
https://doi.org/10.1126/scitranslmed.abk0855
80 N Li, J Yang, J Zhang et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics 2019;17:26–38.
https://doi.org/10.1016/j.gpb.2019.01.002
81 N Li, H An, Z Li et al. Preconception blood pressure and risk of gestational hypertension and preeclampsia: a large cohort study in China. Hypertens Res 2020;43:956–962.
https://doi.org/10.1038/s41440-020-0438-9
82 X Li, J Zheng, X Ma et al. The oral microbiome of pregnant women facilitates gestational diabetes discrimination. J Genet Genomics 2021;48:32–39.
https://doi.org/10.1016/j.jgg.2020.11.006
83 X Li, B Zhang, J Zheng et al. Clinical biochemical indicators and intestinal microbiota testing reveal the influence of reproductive age extending from the mother to the offspring. Microbiol Spectr 2022;10:e01076–e01022.
https://doi.org/10.1128/spectrum.01076-22
84 X Liang, Z Miao, S Lu et al. Integration of multiomics with precision nutrition for gestational diabetes: study protocol for the Westlake Precision Birth Cohort. iMeta 2023;2:1–12.
https://doi.org/10.1002/imt2.96
85 AI Lim, T McFadden, VM Link et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 2021;373:1–14.
https://doi.org/10.1126/science.abf3002
86 AT Liu, S Chen, PK Jena et al. Probiotics improve gastrointestinal function and life quality in pregnancy. Nutrients 2021;13:3931.
https://doi.org/10.3390/nu13113931
87 V Llorens-Rico, JA Simcock, GRB Huys et al. Single-cell approaches in human microbiome research. Cell 2022;185:2725–2738.
https://doi.org/10.1016/j.cell.2022.06.040
88 A Lopez-Moreno, M. Aguilera Probiotics dietary supplementation for modulating endocrine and fertility microbiota dysbiosis. Nutrients 2020;12:757.
https://doi.org/10.3390/nu12030757
89 SN Lundgren, JC Madan, JA Emond et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 2018;6:109.
https://doi.org/10.1186/s40168-018-0490-8
90 AD Mackeen, RE Packard, E Ota et al. Antibiotic regimens for postpartum endometritis. The Cochrane Database Syst Rev 2015;2015:1–99.
https://doi.org/10.1002/14651858.CD001067.pub3
91 JM Macklaim, GB Gloor, KC Anukam et al. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci USA 2011;108:4688–4695.
https://doi.org/10.1073/pnas.1000086107
92 D Mariat, O Firmesse, F Levenez et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123.
https://doi.org/10.1186/1471-2180-9-123
93 S Martín-Peláez, N Cano-Ibáñez, M Pinto-Gallardo et al. The impact of probiotics, prebiotics, and synbiotics during pregnancy or lactation on the intestinal microbiota of children born by cesarean section: a systematic review. Nutrients 2022;14:341.
https://doi.org/10.3390/nu14020341
94 NV Matusheski, A Caffrey, L Christensen et al. Diets, nutrients, genes and the microbiome: recent advances in personalised nutrition. Br J Nutr 2021;126:1489–1497.
https://doi.org/10.1017/S0007114521000374
95 HD McIntyre, P Catalano, C Zhang et al. Gestational diabetes mellitus. Nat Rev Dis Primers 2019;5:47.
https://doi.org/10.1038/s41572-019-0098-8
96 AM Neyrinck, VF Van Hée, LB Bindels et al. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr 2013;109:802–809.
https://doi.org/10.1017/S0007114512002206
97 B Olabi, R. Bhopal Diagnosis of diabetes using the oral glucose tolerance test. Bmj 2009;339:b4354.
https://doi.org/10.1136/bmj.b4354
98 AB Onderdonk, ML Delaney, RN. Fichorova The human microbiome during bacterial vaginosis. Clin Microbiol Rev 2016;29:223–238.
https://doi.org/10.1128/CMR.00075-15
99 R Oozeer, K van Limpt, T Ludwig et al. Intestinal microbiology in early life: specific prebiotics can have similar functionalities as humanmilk oligosaccharides. Am J Clin Nutr 2013;98:561S561s–561S571S.
https://doi.org/10.3945/ajcn.112.038893
100 P Panigrahi, S Parida, NC Nanda et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 2017;548:407–412.
https://doi.org/10.1038/nature23480
101 S Park, D Oh, H Heo et al. Prediction of preterm birth based on machine learning using bacterial risk score in cervicovaginal fluid. Am J Reprod Immunol 2021;86:e13435.
https://doi.org/10.1111/aji.13435
102 S Park, J Moon, N Kang et al. Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model. Front Microbiol 2022;13:1–11.
https://doi.org/10.3389/fmicb.2022.912853
103 JF Plows, JL Stanley, PN Baker et al. The Pathophysiology of Gestational Diabetes Mellitus. Int J Mol Sci 2018;19:3342.
https://doi.org/10.3390/ijms19113342
104 Y Pinto, S Frishman, S Turjeman et al. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut 2023;0:1–11.
https://doi.org/10.1136/gutjnl-2022-328406
105 J Purushe, DE Fouts, M Morrison et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 2010;60:721–729.
https://doi.org/10.1007/s00248-010-9692-8
106 C Quince, AW Walker, JT Simpson et al. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017;35:833–844.
https://doi.org/10.1038/nbt.3935
107 R Romero, M Sirtori, E Oyarzun et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol 1989;161:817–824.
https://doi.org/10.1016/0002-9378(89)90409-2
108 M Rondanelli, MA Faliva, S Perna et al. Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes 2017;8:521–543.
https://doi.org/10.1080/19490976.2017.1345414
109 J Samara, S Moossavi, B Alshaikh et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 2022;30:696–711.e5.
https://doi.org/10.1016/j.chom.2022.04.005
110 DC. Savage Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977;31:107–133.
https://doi.org/10.1146/annurev.mi.31.100177.000543
111 PA Scholtens, DAM Goossens, A. Staiano Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J Gastroenterol 2014;20:13446–13452.
https://doi.org/10.3748/wjg.v20.i37.13446
112 M Schwarzer, K Makki, G Storelli et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic under-nutrition. Science 2016;351:854–857.
https://doi.org/10.1126/science.aad8588
113 M Sgritta, SW Dooling, SA Buffington et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019;101:246–259.e246.
https://doi.org/10.1016/j.neuron.2018.11.018
114 Y Shao, SC Forster, E Tsaliki et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019;574:117–121.
https://doi.org/10.1038/s41586-019-1560-1
115 BM. Sibai Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol 2003;102:181–192.
https://doi.org/10.1016/S0029-7844(03)00475-7
116 MI Smith, T Yatsunenko, MJ Manary et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013;339:548–554.
https://doi.org/10.1126/science.1229000
117 CJ Stewart, NJ Ajami, JL O’Brien et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583–588.
https://doi.org/10.1038/s41586-018-0617-x
118 S Subramanian, S Huq, T Yatsunenko et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014;510:417–421.
https://doi.org/10.1038/nature13421
119 EL Sullivan, EK Nousen, KA. Chamlou Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 2014;123:236–242.
https://doi.org/10.1016/j.physbeh.2012.07.014
120 J Sun, NJ. Buys Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo- controlled trials. Br J Nutr 2016;115:1167–1177.
https://doi.org/10.1017/S0007114516000076
121 Z Sun, XF Pan, X Li et al. The gut microbiome dynamically associates with host glucose metabolism throughout pregnancy: longitudinal findings from a matched case-control study of gestational diabetes mellitus. Adv Sci 2023;22:e2205289.
https://doi.org/10.1002/advs.202205289
122 B Tang, L Tang, S Li et al. Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy. Nat Commun 2023;14:1305.
https://doi.org/10.1038/s41467-023-36981-4
123 F Teng, F Yang, S Huang et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 2015;18:296–306.
https://doi.org/10.1016/j.chom.2015.08.005
124 CG Victora, M de Onis, PC Hallal et al. Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics 2010;125:e473–e480.
https://doi.org/10.1542/peds.2009-1519
125 G. Vogel Deaths prompt a review of experimental probiotic therapy. Science 2008;319:557–557.
https://doi.org/10.1126/science.319.5863.557a
126 L Wampach, A Heintz-Buschart, JV Fritz et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018;9:5091.
https://doi.org/10.1038/s41467-018-07631-x
127 J Wang, J Zheng, W Shi et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018;67:1614–1625.
https://doi.org/10.1136/gutjnl-2018-315988
128 S Wang, CA Ryan, P Boyaval et al. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol 2020;28:28–45.
https://doi.org/10.1016/j.tim.2019.07.010
129 J Wang, Z Li, X Ma et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun 2021;12:4191.
https://doi.org/10.1038/s41467-021-24516-8
130 J Wang, L Xiao, B Xiao et al. Maternal and neonatal viromes indicate the risk of offspring’s gastrointestinal tract exposure to pathogenic viruses of vaginal origin during delivery. mLife 2022;1:303–310.
https://doi.org/10.1002/mlf2.12034
131 LS. Weinert International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: comment to the International Association of Diabetes and Pregnancy Study Groups Consensus Panel. Diabetes Care 2010;33:e97–e97.
https://doi.org/10.2337/dc10-0544
132 SA Whiteside, H Razvi, S Dave et al. The microbiome of the urinary tract--a role beyond infection. Nat Rev Urol 2015;12:81–90.
https://doi.org/10.1038/nrurol.2014.361
133 H Wu, C Dong, W Xiao et al. Associations between PM(2.5) exposure and infant growth: a mediation analysis of oral microbiota. Sci Total Environ 2022;823:153688.
https://doi.org/10.1016/j.scitotenv.2022.153688
134 J Xiao, KA Fiscella, SR. Gill Oral microbiome: possible harbinger for children’s health. Int J Oral Sci 2020;12:12.
https://doi.org/10.1038/s41368-020-0082-x
135 L Xiao, J Wang, J Zheng et al. Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biol 2021;22:1–21.
https://doi.org/10.1186/s13059-021-02463-3
136 Y Yang, I Le Ray, J Zhu et al. Preeclampsia prevalence, risk factors, and pregnancy outcomes in Sweden and China. JAMA Netw Open 2021;4:e218401.
https://doi.org/10.1001/jamanetworkopen.2021.8401
137 X Yao, N Zuo, W Guan et al. Association of gut microbiota enterotypes with blood trace elements in women with infertility. Nutrients 2022;14:3195.
https://doi.org/10.3390/nu14153195
138 M Yassour, T Vatanen, H Siljander et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016;8:1–12.
https://doi.org/10.1126/scitranslmed.aad0917
139 BH Yoon, R Romero, JB Moon et al. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2001;185:1130–1136.
https://doi.org/10.1067/mob.2001.117680
140 Y Yu, B Zhang, P Ji et al. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8(+/−) mouse model of ASD-like behavior. Nat Commun 2022;13:1151.
https://doi.org/10.1038/s41467-022-28746-2
141 D Zeevi, T Korem, N Zmora et al. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079–1094.
https://doi.org/10.1016/j.cell.2015.11.001
142 Q Zhang, Y Wu, X. Fei Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr 2015;67: 571–580.
https://doi.org/10.1080/09637486.2016.1181156
143 X Zhang, Q Zhai, J Wang et al. Variation of the vaginal microbiome during and after pregnancy in Chinese women. Genomics Proteomics Bioinformatics 2022;20:322–333.
https://doi.org/10.1016/j.gpb.2021.08.013
144 W Zheng, Q Xu, W Huang et al. Gestational diabetes mellitus is associated with reduced dynamics of gut microbiota during the first half of pregnancy. mSystems 2020a;5:e00109–e00120.
https://doi.org/10.1128/mSystems.00109-20
145 W Zheng, W Zhao, M Wu et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 2020b;577:543–548.
https://doi.org/10.1038/s41586-019-1898-4
146 WW Zhu, HX Yang, YM Wei et al. Evaluation of the value of fasting plasma glucose in the first prenatal visit to diagnose gestational diabetes mellitus in china. Diabetes Care 2013;36:586–590.
https://doi.org/10.2337/dc12-1157
147 N Zmora, G Zilberman-Schapira, J Suez et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018;174:1388–1405.e1321.
https://doi.org/10.1016/j.cell.2018.08.041
[1] Wanglong Gou, Zelei Miao, Kui Deng, Ju-Sheng Zheng. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health[J]. Protein Cell, 2023, 14(11): 787-806.
[2] Qinwen Wang, Qianyue Yang, Xingyin Liu. The microbiota–gut–brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775.
[3] Huicheng Shi, Xi Yu, Gong Cheng. Impact of the microbiome on mosquito-borne diseases[J]. Protein Cell, 2023, 14(10): 743-761.
[4] Tao Wen, Guoqing Niu, Tong Chen, Qirong Shen, Jun Yuan, Yong-Xin Liu. The best practice for microbiome analysis using R[J]. Protein Cell, 2023, 14(10): 713-725.
[5] Sheng Liu, Wenjing Zhao, Ping Lan, Xiangyu Mou. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
[6] Jiayu Wu, Kai Wang, Xuemei Wang, Yanli Pang, Changtao Jiang. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
[7] Abigail Wong-Rolle, Haohan Karen Wei, Chen Zhao, Chengcheng Jin. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein Cell, 2021, 12(5): 426-435.
[8] Faming Zhang, Bota Cui, Xingxiang He, Yuqiang Nie, Kaichun Wu, Daiming Fan, FMT-standardization Study Group. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473.
[9] Lu Gao, Tiansong Xu, Gang Huang, Song Jiang, Yan Gu, Feng Chen. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
[10] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[11] Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu. Pharmacomicrobiomics: a novel route towards personalized medicine?[J]. Protein Cell, 2018, 9(5): 432-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed