1 |
A Almeida, S Nayfach, M Boland et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021;39:105–14.
https://doi.org/10.1038/s41587-020-0603-3
|
2 |
EN Baruch, I Youngster, G Ben-Betzalel et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021;371:602–9.
https://doi.org/10.1126/science.abb5920
|
3 |
M Batten, ER Shanahan, IP Silva et al. Low intestinal microbial diversity is associated with severe immune-related adverse events and lack of response to neoadjuvant combination antiPD1, anti-CTLA4 immunotherapy. Cancer Res 2019;79:2822.
https://doi.org/10.1158/1538-7445.AM2019-2822
|
4 |
KE Beck, JA Blansfield, KQ Tran et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 2006;24:2283–9.
https://doi.org/10.1200/JCO.2005.04.5716
|
5 |
MJ Bender, AC McPherson, CM Phelps et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 2023;186:1846–1862.e26.
https://doi.org/10.1016/j.cell.2023.03.011
|
6 |
AP Bhatt, SJ Pellock, KA Biernat et al. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci USA 2020;117:7374–81.
https://doi.org/10.1073/pnas.1918095117
|
7 |
M Bretthauer, M. Kalager Principles, effectiveness and caveats in screening for cancer. Br J Surg 2013;100:55–65.
https://doi.org/10.1002/bjs.8995
|
8 |
FP Canale, C Basso, G Antonini et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 2021;598:662–6.
https://doi.org/10.1038/s41586-021-04003-2
|
9 |
AN Chamseddine, M Ducreux, JP Armand et al. Intestinal bacterial beta-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther 2019;199:1–5.
https://doi.org/10.1016/j.pharmthera.2019.03.002
|
10 |
D Chandra, A Jahangir, W Quispe-Tintaya et al. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. Br J Cancer 2013;108:2281–90.
https://doi.org/10.1038/bjc.2013.206
|
11 |
N Chaput, P Lepage, C Coutzac et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017;28:1368–79.
https://doi.org/10.1093/annonc/mdx108
|
12 |
W Chen, Y Wang, M Qin et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018;12:5995–6005.
https://doi.org/10.1021/acsnano.8b02235
|
13 |
J Chen, K Zhao, L. Vitetta Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients 2019;11:1026.
https://doi.org/10.3390/nu11051026
|
14 |
S Chen, W Chieng, S Huang et al. The synergistic tumor growth-inhibitory effect of probiotic Lactobacillus on transgenic mouse model of pancreatic cancer treated with gemcitabine. Sci Rep 2020;10:20319.
https://doi.org/10.1038/s41598-020-77322-5
|
15 |
Y Chen, J Ma, Y Dong et al. Characteristics of gut microbiota in patients with clear cell renal cell carcinoma. Front Microbiol 2022a;13:913718.
https://doi.org/10.3389/fmicb.2022.913718
|
16 |
F Chen, X Dai, C-C Zhou et al. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 2022b;71:1315–25.
https://doi.org/10.1136/gutjnl-2020-323476
|
17 |
X Chen, S Li, C Lin et al. Isomaltooligosaccharides inhibit early colorectal carcinogenesis in a 1,2-dimethylhydrazine-induced rat model. Front Nutr 2022c;9:995126.
https://doi.org/10.3389/fnut.2022.995126
|
18 |
YE Chen, D Bousbaine, A Veinbachs et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 2023;380:203–10.
https://doi.org/10.1126/science.abp9563
|
19 |
Y Cheng, J Du, J Han et al. Polymyxin Battenuates LPS-induced death butaggravates radiation-induced death via TLR4-Myd88-IL-6 pathway. Cell Physiol Biochem 2017;42:1120–6.
https://doi.org/10.1159/000478767
|
20 |
W Cheng, W Xiang, S Wang et al. Tanshinone IIA ameliorates oxaliplatin-induced neurotoxicity via mitochondrial protection and autophagy promotion. Am J Transl Res 2019;11:3140–9.
|
21 |
MA Ciorba, TE Riehl, MS Rao et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 2012;61:829–38.
https://doi.org/10.1136/gutjnl-2011-300367
|
22 |
OO Coker, G Nakatsu, RZ Dai et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 2019;68:654–62.
https://doi.org/10.1136/gutjnl-2018-317178
|
23 |
OO Coker, WKK Wu, SH Wong et al. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 2020;159:1459–1470.e5.
https://doi.org/10.1053/j.gastro.2020.06.042
|
24 |
OO Coker, C Liu, WKK Wu et al. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome 2022;10:35.
https://doi.org/10.1186/s40168-021-01208-5
|
25 |
PA Crawford, JI. Gordon Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA 2005;102:13254–9.
https://doi.org/10.1073/pnas.0504830102
|
26 |
M Cui, H Xiao, Y Li et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017;9:448–61.
https://doi.org/10.15252/emmm.201606932
|
27 |
R Daillere, M Vétizou, N Waldschmitt et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016;45:931–43.
https://doi.org/10.1016/j.immuni.2016.09.009
|
28 |
D Davar, AK Dzutsev, JA McCulloch et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021;371:595–602.
https://doi.org/10.1126/science.abf3363
|
29 |
C de Martel, D Georges, F Bray et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020;8:e180–90.
https://doi.org/10.1016/S2214-109X(19)30488-7
|
30 |
L Derosa, MD Hellmann, M Spaziano et al. Negative association of antibiotics on clinical activity of immune check-point inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 2018;29:1437–44.
https://doi.org/10.1093/annonc/mdy103
|
31 |
D De Ruysscher, G Niedermann, NG Burnet et al. Radiotherapy toxicity. Nat Rev Dis Primers 2019;5:15.
https://doi.org/10.1038/s41572-019-0073-4
|
32 |
G Deshpande, G Athalye-Jape, S. Patole Para-probiotics for preterm neonates-the next frontier. Nutrients 2018;10:871.
https://doi.org/10.3390/nu10070871
|
33 |
Y Ding, Y Yan, D Chen et al. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice. Food Funct 2019;10:3671–83.
https://doi.org/10.1039/C9FO00638A
|
34 |
X Ding, Q Li, P Li et al. Fecal microbiota transplantation: a promising treatment for radiation enteritis? Radiother Oncol 2020;143:12–8.
https://doi.org/10.1016/j.radonc.2020.01.011
|
35 |
AB Dohlman, J Klug, M Mesko et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 2022;185:3807–3822.e12.
https://doi.org/10.1016/j.cell.2022.09.015
|
36 |
X Dong, P Pan, D-W Zheng et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv 2020;6:eaba1590.
https://doi.org/10.1126/sciadv.aba1590
|
37 |
K Dubin, MK Callahan, B Ren et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016;7:10391.
https://doi.org/10.1038/ncomms10391
|
38 |
LJ Egan, L Eckmann, FR Greten et al. I kappa B-kinase beta-dependent NF-kappa B activation provides radio-protection to the intestinal epithelium. Proc Natl Acad Sci USA 2004;101:2452–7.
https://doi.org/10.1073/pnas.0306734101
|
39 |
R Eisenhofer, JJ Minich, C Marotz et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol 2019;27:105–17.
https://doi.org/10.1016/j.tim.2018.11.003
|
40 |
JR Erb-Downward, NR Falkowski, JC D’Souza et al. Critical relevance of stochastic effects on low-bacterial-biomass 16S rRNA gene analysis. mBio 2020;11:e00258–20.
https://doi.org/10.1128/mBio.00258-20
|
41 |
S Federici, S Kredo-Russo, R Valdés-Mas et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 2022;185:2879–2898.e24.
|
42 |
B Flemer, RD Warren, MP Barrett et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018;67:1454–63.
https://doi.org/10.1136/gutjnl-2017-314814
|
43 |
LT Geller, M Barzily-Rokni, T Danino et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017;357:1156–60.
https://doi.org/10.1126/science.aah5043
|
44 |
GR Gibson, R Hutkins, ME Sanders et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491–502.
https://doi.org/10.1038/nrgastro.2017.75
|
45 |
L Gogokhia, K Buhrke, R Bell et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019;25:285–299.e8.
https://doi.org/10.1016/j.chom.2019.01.008
|
46 |
V Gopalakrishnan, CN Spencer, L Nezi et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359:97–103.
https://doi.org/10.1126/science.aan4236
|
47 |
M Guenther, M Haas, V Heinemann et al. Bacterial lipopolysaccharide as negative predictor of gemcitabine efficacy in advanced pancreatic cancer - translational results from the AIO-PK0104 Phase 3 study. Br J Cancer 2020;123:1370–6.
https://doi.org/10.1038/s41416-020-01029-7
|
48 |
J Guo, Y Chen, X Lei et al. Monophosphoryl lipid a attenuates radiation injury through TLR4 activation. Oncotarget 2017;8:86031–42.
https://doi.org/10.18632/oncotarget.20907
|
49 |
J Han, Z-H Tao, J-L Wang et al. Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat Microbiol 2023;8:919–33.
https://doi.org/10.1038/s41564-023-01363-5
|
50 |
Y He, W Wu, H-M Zheng et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018;24:1532–5.
https://doi.org/10.1038/s41591-018-0164-x
|
51 |
L He, H Yang, J Tang et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J Biol Eng 2019;13:58.
https://doi.org/10.1186/s13036-019-0189-9
|
52 |
K Hezaveh, RS Shinde, A Klötgen et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 2022;55:324–40.e8.
https://doi.org/10.1016/j.immuni.2022.01.006
|
53 |
ZC Holmes, MM Villa, HK Durand et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 2022;10:114.
https://doi.org/10.1186/s40168-022-01307-x
|
54 |
B Hong, T Sobue, L Choquette et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome 2019;7:1–18.
https://doi.org/10.1186/s40168-019-0679-5
|
55 |
Y Hsieh, S-Y Tung, H-Y Pan et al. Fusobacterium nucleatum colonization is associated with decreased survival of Helicobacter pylori-positive gastric cancer patients. World J Gastroenterol 2021;27:7311–23.
https://doi.org/10.3748/wjg.v27.i42.7311
|
56 |
C Hsueh, H-C Lau, Q Huang et al. Fusobacterium nucleatum impairs DNA mismatch repair and stability in patients with squamous cell carcinoma of the head and neck. Cancer 2022;128:3170–84.
https://doi.org/10.1002/cncr.34338
|
57 |
S Huang, J Chen, L-Y Lian et al. Intratumoral levels and prognostic significance of Fusobacterium nucleatum in cervical carcinoma. Aging 2020;12:23337–50.
https://doi.org/10.18632/aging.104188
|
58 |
E Hughes, M Scurr, E Campbell et al. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018;154:62–8.
https://doi.org/10.1111/imm.12913
|
59 |
N Iida, A Dzutsev, CA Stewart et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013;342:967–70.
https://doi.org/10.1126/science.1240527
|
60 |
G Kang, D-R Jung, YH Lee et al. Dynamics of fecal microbiota with and without invasive cervical cancer and its application in early diagnosis. Cancers 2020;12:3800.
https://doi.org/10.3390/cancers12123800
|
61 |
G Kang, D-R Jung, YH Lee et al. Potential association between vaginal microbiota and cervical carcinogenesis in Korean women: a cohort study. Microorganisms 2021;9:294.
https://doi.org/10.3390/microorganisms9020294
|
62 |
E Kartal, TSB Schmidt, E Molina-Montes et al. MAGIC Study investigators. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022;71:1359–72.
https://doi.org/10.1136/gutjnl-2021-324755
|
63 |
S Kato, N Hamouda, Y Kano et al. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin Exp Pharmacol Physiol 2017;44:1017–25.
https://doi.org/10.1111/1440-1681.12792
|
64 |
T Kodawara, T Higashi, Y Negoro et al. The inhibitory effect of ciprofloxacin on the beta-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G. Basic Clin Pharmacol 2016;118:333–7.
https://doi.org/10.1111/bcpt.12511
|
65 |
TNY Kwong, X Wang, G Nakatsu et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 2018;155:383–390.e8.
https://doi.org/10.1053/j.gastro.2018.04.028
|
66 |
S Lee, S-Y Cho, Y Yoon et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat Microbiol 2021;6:277–88.
https://doi.org/10.1038/s41564-020-00831-6
|
67 |
HL Li, L Lu, XS Wang et al. Alteration of gut microbiota and inflammatory cytokine/chemokine profiles in 5-fluorouracil induced intestinal mucositis. Front Cell Infect Microbiol 2017;7:455.
https://doi.org/10.3389/fcimb.2017.00455
|
68 |
Z Li, R Fu, X Wen et al. The significant clinical correlation of the intratumor oral microbiome in oral squamous cell carcinoma based on tissue-derived sequencing. Front Physiol 2023;13:1089539.
https://doi.org/10.3389/fphys.2022.1089539
|
69 |
JQ Liang, SH Wong, CH Szeto et al. Fecal microbial DNA markers serve for screening colorectal neoplasm in asymptomatic subjects. J Gastroenterol Hepatol 2021;36:1035–43.
https://doi.org/10.1111/jgh.15171
|
70 |
MY Lim, S Hong, KH Hwang et al. Diagnostic and prognostic potential of the oral and gut microbiome for lung adenocarcinoma. Clin Transl Med 2021;11:e508.
https://doi.org/10.1002/ctm2.508
|
71 |
Y Lin, HC Lau, Y Liu et al. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multi-cohort fecal metagenomic analyses. Gastroenterology 2022;163:908–21.
https://doi.org/10.1053/j.gastro.2022.06.038
|
72 |
YH Linn, KK Thu, NHH. Win Effect of probiotics for the prevention of acute radiation-induced diarrhoea among cervical cancer patients: a randomized double-blind placebo-controlled study. Probiotics Antimicrob Proteins 2019;11:638–47.
https://doi.org/10.1007/s12602-018-9408-9
|
73 |
D Liu, Y Hu, Y Guo et al. Mycoplasma-associated multi-drug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One 2017;12:e0184578.
https://doi.org/10.1371/journal.pone.0184578
|
74 |
N Liu, N Jiao, J-C Tan et al. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol 2022;7:238–50.
https://doi.org/10.1038/s41564-021-01030-7
|
75 |
Y Lu, X Yuan, M Wang et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol 2022;15:47.
https://doi.org/10.1186/s13045-022-01273-9
|
76 |
C Ma, M Han, B Heinrich et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018;360:eaan5931.
https://doi.org/10.1126/science.aan5931
|
77 |
C Ma, K Chen, Y Wang et al. Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes 2021;13:1–6.
https://doi.org/10.1080/19490976.2020.1869505
|
78 |
DJ Mandell, MJ Lajoie, MT Mee et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 2015;518:55–60.
https://doi.org/10.1038/nature14121
|
79 |
C Manichanh, E Varela, C Martinez et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol 2008;103:1754–61.
https://doi.org/10.1111/j.1572-0241.2008.01868.x
|
80 |
O Manor, CL Dai, SA Kornilov et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun 2020;11:5206.
https://doi.org/10.1038/s41467-020-18871-1
|
81 |
C Marcella, B Cui, CR Kelly et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther 2021;53:33–42.
https://doi.org/10.1111/apt.16148
|
82 |
JA McCulloch, D Davar, RR Rodrigues et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat Med 2022;28:545–56.
https://doi.org/10.1038/s41591-022-01698-2
|
83 |
K Mima, R Nishihara, ZR Qian et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65:1973–80.
https://doi.org/10.1136/gutjnl-2015-310101
|
84 |
N Nagata, S Nishijima, Y Kojima et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 2022;163:222–38.
https://doi.org/10.1053/j.gastro.2022.03.054
|
85 |
G Nakatsu, H Zhou, WKK Wu et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 2018;155:529–541.e5.
https://doi.org/10.1053/j.gastro.2018.04.018
|
86 |
L Narunsky-Haziza, GD Sepich-Poore, I Livyatan et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 2022;185:3789–3806.e17.
https://doi.org/10.1016/j.cell.2022.09.005
|
87 |
D Nejman, I Livyatan, G Fuks et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020;368:973–80.
https://doi.org/10.1126/science.aay9189
|
88 |
JLG Nino, H Wu, KD LaCourse et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022;611:810.
https://doi.org/10.1038/s41586-022-05435-0
|
89 |
EM Park, M Chelvanambi, N Bhutiani et al. Targeting the gut and tumor microbiota in cancer. Nat Med 2022;28:690–703.
https://doi.org/10.1038/s41591-022-01779-2
|
90 |
Z Peng, S Cheng, Y Kou et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol Res 2020;8:1251–61.
https://doi.org/10.1158/2326-6066.CIR-19-1014
|
91 |
DE Peterson, CB Boers-Doets, RJ Bensadoun et al. ESMO Guidelines Committee. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up(aEuro). Ann Oncol 2015;26:v139–51.
https://doi.org/10.1093/annonc/mdv202
|
92 |
M Picard, S Yonekura, K Slowicka et al. Ileal immune tonus is a prognosis marker of proximal colon cancer in mice and patients. Cell Death Differ 2021;28:1532–47.
https://doi.org/10.1038/s41418-020-00684-w
|
93 |
N Pique, M Berlanga, D. Minana-Galbis Health benefits of heat-killed (Tyndallized) probiotics: an overview. Int J Mol Sci 2019;20:2534.
https://doi.org/10.3390/ijms20102534
|
94 |
GD Poore, E Kopylova, Q Zhu et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020;579:567–74.
https://doi.org/10.1038/s41586-020-2095-1
|
95 |
N Principi, E Silvestri, S. Esposito Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 2019;10:513.
https://doi.org/10.3389/fphar.2019.00513
|
96 |
T Pulingam, T Parumasivam, AM Gazzali et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 2022;170:106103.
https://doi.org/10.1016/j.ejps.2021.106103
|
97 |
H Qiao, X-R Tan, H Li et al. Association of intratumoral microbiota with prognosis in patients with nasopharyngeal carcinoma from 2 hospitals in China. JAMA Oncol 2022;8:1301.
https://doi.org/10.1001/jamaoncol.2022.2810
|
98 |
W Quispe-Tintaya, D Chandra, A Jahangir et al. Nontoxic radioactive Listeria(at) is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci USA 2013;110:8668–73.
https://doi.org/10.1073/pnas.1211287110
|
99 |
Z Ren, A Li, J Jiang et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019;68:1014–23.
https://doi.org/10.1136/gutjnl-2017-315084
|
100 |
Z Ren, S Chen, H Lv et al. Effect of Bifidobacterium animalis subsp lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res 2022;184:106406.
https://doi.org/10.1016/j.phrs.2022.106406
|
101 |
T Riehl, S Cohn, T Tessner et al. Lipopolysaccharide is radioprotective in the mouse intestine through a prostaglandin-mediated mechanism. Gastroenterology 2000;118:1106–16.
https://doi.org/10.1016/S0016-5085(00)70363-5
|
102 |
TE Riehl, RD Newberry, RG Lorenz et al. TNFR1 mediates the radioprotective effects of lipopolysaccharide in the mouse intestine. Am J Physiol Gastrointest Liver Physiol 2004;286:G166–73.
https://doi.org/10.1152/ajpgi.00537.2002
|
103 |
E Riquelme, Y Zhang, L Zhang et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019;178:795–806.e12.
https://doi.org/10.1016/j.cell.2019.07.008
|
104 |
B Routy, E Le Chatelier, L Derosa et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91–7.
https://doi.org/10.1126/science.aan3706
|
105 |
AJ Rovner, AD Haimovich, SR Katz et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 2015;518:89–93.
https://doi.org/10.1038/nature14095
|
106 |
S Salminen, MC Collado, A Endo et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021;18:649–67.
https://doi.org/10.1038/s41575-021-00440-6
|
107 |
SJ Salter, MJ Cox, EM Turek et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014;12:87.
https://doi.org/10.1186/s12915-014-0087-z
|
108 |
TSB Schmidt, SS Li, OM Maistrenko et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat Med 2022;28:1902–12.
https://doi.org/10.1038/s41591-022-01913-0
|
109 |
S Shen, G Lim, Z You et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci 2017;20:1213–6.
https://doi.org/10.1038/nn.4606
|
110 |
SL Shiao, KM Kershaw, JJ Limon et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 2021;39:1202–1213.e6.
https://doi.org/10.1016/j.ccell.2021.07.002
|
111 |
TT Sims, MB El Alam, TV Karpinets et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun Biol 2021;4:237.
https://doi.org/10.1038/s42003-021-01741-x
|
112 |
V Singh, BS Yeoh, B Chassaing et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018;175:679–694.e22.
https://doi.org/10.1016/j.cell.2018.09.004
|
113 |
AD Singhi, EJ Koay, ST Chari et al. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology 2019;156:2024–40.
https://doi.org/10.1053/j.gastro.2019.01.259
|
114 |
P Spanogiannopoulos, TS Kyaw, BGH Guthrie et al. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol 2022;7:1605–20.
https://doi.org/10.1038/s41564-022-01226-5
|
115 |
CN Spencer, JL McQuade, V Gopalakrishnan et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 2021;374:1632–40.
https://doi.org/10.1126/science.aaz7015
|
116 |
F Stirling, L Bitzan, S O’Keefe et al. Rational design of evolutionarily stable microbial kill switches. Mol Cell 2017;68:686–697.e3.
https://doi.org/10.1016/j.molcel.2017.10.033
|
117 |
V Stojanovska, M Prakash, R McQuade et al. Oxaliplatin treatment alters systemic immune responses. Biomed Res Int 2019;2019:4650695.
https://doi.org/10.1155/2019/4650695
|
118 |
S Su, L-C Chang, H-D Huang et al. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis 2021;42:127–35.
https://doi.org/10.1093/carcin/bgaa062
|
119 |
S Terrisse, L Derosa, V Iebba et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ 2021;28:2778–96.
https://doi.org/10.1038/s41418-021-00784-1
|
120 |
J Tintelnot, Y Xu, TR Lesker et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 2023;615:168–74.
https://doi.org/10.1038/s41586-023-05728-y
|
121 |
Y Touchefeu, E Montassier, K Nieman et al. Systematic review: the role of the gut microbiota in chemotherapyor radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 2014;40:409–21.
https://doi.org/10.1111/apt.12878
|
122 |
JJ Tsay, BG Wu, I Sulaiman et al. Lower airway dysbiosis affects lung cancer progression. Cancer Discov 2021;11:293–307.
https://doi.org/10.1158/2159-8290.CD-20-0263
|
123 |
J Vande Voorde, S Sabuncuoğlu, S Noppen et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014;289:13054–65.
https://doi.org/10.1074/jbc.M114.558924
|
124 |
S Viaud, F Saccheri, G Mignot et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013;342:971–6.
https://doi.org/10.1126/science.1240537
|
125 |
BD Wallace, H Wang, KT Lane et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:831–5.
https://doi.org/10.1126/science.1191175
|
126 |
Y Wan, T. Zuo Interplays between drugs and the gut microbiome. Gastroenterol Rep 2022;10:goac009.
https://doi.org/10.1093/gastro/goac009
|
127 |
SB Wang, XH Liu, B Li et al. Bacteria-assisted selective photothermal therapy for precise tumor inhibition. Adv Funct Mater 2019;29:1904093.
https://doi.org/10.1002/adfm.201904093
|
128 |
A Wang, Z Ling, Z Yang et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One 2015;10:e0126312.
https://doi.org/10.1371/journal.pone.0126312
|
129 |
Y Wang, DH Wiesnoski, BA Helmink et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 2018;24:1804–8.
https://doi.org/10.1038/s41591-018-0238-9
|
130 |
M Wang, B Rousseau, K Qiu et al. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol 2023.
https://doi.org/10.1038/s41587-023-01957-8
|
131 |
T Watanabe, Y Nadatani, W Suda et al. Long-term persistence of gastric dysbiosis after eradication of Helicobacter pylori in patients who underwent endoscopic submucosal dissection for early gastric cancer. Gastric Cancer 2021;24:710–20.
https://doi.org/10.1007/s10120-020-01141-w
|
132 |
M Weniger, T Hank, M Qadan et al. Influence of Klebsiella pneumoniae and quinolone treatment on prognosis in patients with pancreatic cancer. Br J Surg 2021;108:709–16.
https://doi.org/10.1002/bjs.12003
|
133 |
SH Wong, TNY Kwong, T-C Chow et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 2017;66:1441–8.
https://doi.org/10.1136/gutjnl-2016-312766
|
134 |
P Wu, G Zhang, J Zhao et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol 2018;8:167.
https://doi.org/10.3389/fcimb.2018.00167
|
135 |
Y Wu, N Jiao, R Zhu et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat Commun 2021;12.
https://doi.org/10.1038/s41467-021-23265-y
|
136 |
M Yadav, NS. Chauhan Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep 2022;10:goab046.
https://doi.org/10.1093/gastro/goab046
|
137 |
K Yamamura, Y Baba, S Nakagawa et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 2016;22:5574–81.
https://doi.org/10.1158/1078-0432.CCR-16-1786
|
138 |
L Yan, Y Chen, F Chen et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 265 years of follow-up. Gastroenterology 2022;163:154–162.e3.
https://doi.org/10.1053/j.gastro.2022.03.039
|
139 |
C Yeung, W-T Chan, C-B Jiang et al. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS One 2015;10:e0141402.
https://doi.org/10.1371/journal.pone.0141402
|
140 |
Y Yoon, G Kim, B Jeon et al. Bifidobacterium strain-specific enhances the efficacy of cancer therapeutics in tumor-bearing mice. Cancers 2021;13:957.
https://doi.org/10.3390/cancers13050957
|
141 |
T Yu, F Guo, Y Yu et al. Fusobacterium nucleatum promotes Chemoresistance to colorectal cancer by modulating autophagy. Cell 2017;170:548–563.e16.
https://doi.org/10.1016/j.cell.2017.07.008
|
142 |
L Yuan, S Zhang, H Li et al. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother 2018;108:184–93.
https://doi.org/10.1016/j.biopha.2018.08.165
|
143 |
W Yuan, X Xiao, X Yu et al. Probiotic Therapy (BIO-THREE) mitigates intestinal microbial imbalance and intestinal damage caused by oxaliplatin. Probiotics Antimicrob Proteins 2022;14:60–71.
https://doi.org/10.1007/s12602-021-09795-3
|
144 |
Y Zhang, Y Zhang, L Xia et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of Azurin Protein. Appl Environ Microbiol 2012;78:7603–10.
https://doi.org/10.1128/AEM.01390-12
|
145 |
S Zhang, C Kong, Y Yang et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Theranostics 2020a;10:11595–606.
https://doi.org/10.7150/thno.49515
|
146 |
T Zhang, G Lu, Z Zhao et al. Washed microbiota transplantation vs manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell 2020b;11:251–66.
https://doi.org/10.1007/s13238-019-00684-8
|
147 |
X Zhang, Y Zhang, X Gui et al. Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer. iScience 2022;25:104203.
https://doi.org/10.1016/j.isci.2022.104203
|
148 |
Q Zhang, Q Zhao, T Li et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab 2023;35:943–960.e9.
https://doi.org/10.1016/j.cmet.2023.04.015
|
149 |
D Zheng, X Dong, P Pan et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng 2019;3:717–28.
https://doi.org/10.1038/s41551-019-0423-2
|
150 |
Y Zheng, Z Fang, Y Xue et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes 2020;11:1030–42.
https://doi.org/10.1080/19490976.2020.1737487
|
151 |
D Zhu, J Zhang, G Luo et al. Bright bacterium for hypoxia-tolerant photodynamic therapy against orthotopic colon tumors by an interventional method. Adv Sci 2021;8:e2004769.
https://doi.org/10.1002/advs.202004769
|