|
|
|
Transformer-based DNA methylation detection on ionic signals from Oxford Nanopore sequencing data |
Xiuquan Wang1, Mian Umair Ahsan2, Yunyun Zhou2( ), Kai Wang2,3( ) |
1. Department of Mathematics and Computer Science, Tougaloo College, Jackson, MS 39174, USA 2. Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA 3. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA |
|
|
|
|
Abstract Background: Oxford Nanopore long-read sequencing technology addresses current limitations for DNA methylation detection that are inherent in short-read bisulfite sequencing or methylation microarrays. A number of analytical tools, such as Nanopolish, Guppy/Tombo and DeepMod, have been developed to detect DNA methylation on Nanopore data. However, additional improvements can be made in computational efficiency, prediction accuracy, and contextual interpretation on complex genomics regions (such as repetitive regions, low GC density regions). Method: In the current study, we apply Transformer architecture to detect DNA methylation on ionic signals from Oxford Nanopore sequencing data. Transformer is an algorithm that adopts self-attention architecture in the neural networks and has been widely used in natural language processing. Results: Compared to traditional deep-learning method such as convolutional neural network (CNN) and recurrent neural network (RNN), Transformer may have specific advantages in DNA methylation detection, because the self-attention mechanism can assist the relationship detection between bases that are far from each other and pay more attention to important bases that carry characteristic methylation-specific signals within a specific sequence context. Conclusion: We demonstrated the ability of Transformers to detect methylation on ionic signal data.
|
| Keywords
Nanopore
long-read sequencing
deep learning
Transformer model
DNA methylation.
|
|
Corresponding Author(s):
Yunyun Zhou,Kai Wang
|
|
Just Accepted Date: 14 April 2023
Online First Date: 13 July 2023
Issue Date: 08 October 2023
|
|
| 1 |
J. Bell, (2021). Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol., 22: 127
https://doi.org/10.1186/s13059-021-02347-6
|
| 2 |
M. Kulis, (2010). DNA methylation and cancer. Adv. Genet., 70: 27–56
https://doi.org/10.1016/B978-0-12-380866-0.60002-2
|
| 3 |
B. Jin, K. Robertson, (2013). DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol., 754: 3–29
https://doi.org/10.1007/978-1-4419-9967-2_1
|
| 4 |
C., Bernstein, V., Nfonsam, A. R. Prasad, (2013). Epigenetic field defects in progression to cancer. World J. Gastrointest. Oncol., 5: 43–49
https://doi.org/10.4251/wjgo.v5.i3.43
|
| 5 |
O., nez-Iglesias, I., Carrera, J. C., Carril, L., ndez-Novoa, N. Cacabelos, (2020). DNA methylation in neurodegenerative and cerebrovascular disorders. Int. J. Mol. Sci., 21: 2220
https://doi.org/10.3390/ijms21062220
|
| 6 |
H., Jeong, I., Mendizabal, S., Berto, P., Chatterjee, T., Layman, N., Usui, K., Toriumi, C., Douglas, D., Singh, I. Huh, et al.. (2021). Evolution of DNA methylation in the human brain. Nat. Commun., 12: 2021
https://doi.org/10.1038/s41467-021-21917-7
|
| 7 |
E. M. Jobe, (2017). DNA methylation and adult neurogenesis. Brain Plast., 3: 5–26
https://doi.org/10.3233/BPL-160034
|
| 8 |
P., Tognini, D. Napoli, (2015). Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Front. Cell. Neurosci., 9: 331
https://doi.org/10.3389/fncel.2015.00331
|
| 9 |
C. R., McCoy, M. E., Glover, L. T., Flynn, R. K., Simmons, J. L., Cohen, T., Ptacek, E. J., Lefkowitz, N. L., Jackson, H., Akil, X. Wu, et al.. (2019). Altered DNA methylation in the developing brains of rats genetically prone to high versus low anxiety. J. Neurosci., 39: 3144–3158
https://doi.org/10.1523/JNEUROSCI.1157-15.2019
|
| 10 |
P. A., Jones, J. P. Issa, (2016). Targeting the cancer epigenome for therapy. Nat. Rev. Genet., 17: 630–641
https://doi.org/10.1038/nrg.2016.93
|
| 11 |
S. Mani, (2010). DNA demethylating agents and epigenetic therapy of cancer. Adv. Genet., 70: 327–340
https://doi.org/10.1016/B978-0-12-380866-0.60012-5
|
| 12 |
J. P., Issa, G., Garcia-Manero, F. J., Giles, R., Mannari, D., Thomas, S., Faderl, E., Bayar, J., Lyons, C. S., Rosenfeld, J. Cortes, et al.. (2004). Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood, 103: 1635–1640
https://doi.org/10.1182/blood-2003-03-0687
|
| 13 |
X. L., Ding, X., Yang, G. Liang, (2016). Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2′-deoxycytidine. Sci. Rep., 6: 24545
https://doi.org/10.1038/srep24545
|
| 14 |
E. S., Ovenden, N. W., McGregor, R. A. Emsley, (2018). DNA methylation and antipsychotic treatment mechanisms in schizophrenia: progress and future directions. Prog. Neuropsychopharmacol. Biol. Psychiatry, 81: 38–49
https://doi.org/10.1016/j.pnpbp.2017.10.004
|
| 15 |
T. A., Clark, X., Lu, K., Luong, Q., Dai, M., Boitano, S. W., Turner, C. He, (2013). Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol., 11: 4
https://doi.org/10.1186/1741-7007-11-4
|
| 16 |
J., Beaulaurier, X. Zhang, S., Zhu, R., Sebra, C., Rosenbluh, G., Deikus, N., Shen, D., Munera, M. K., Waldor, A. Chess, et al.. (2015). Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun., 6: 7438
https://doi.org/10.1038/ncomms8438
|
| 17 |
Q., Liu, D. C., Georgieva, D. Egli, (2019). NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data. BMC Genomics, 20: 78
https://doi.org/10.1186/s12864-018-5372-8
|
| 18 |
J. T., Simpson, R. E., Workman, P. C., Zuzarte, M., David, L. J. Dursi, (2017). Detecting DNA cytosine methylation using Nanopore sequencing. Nat. Methods, 14: 407–410
https://doi.org/10.1038/nmeth.4184
|
| 19 |
C., Pimiento, D. J., Ehret, B. J. Macfadden, (2010). Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama. PLoS One, 5: e10552
https://doi.org/10.1371/journal.pone.0010552
|
| 20 |
P., Ni, N., Huang, Z., Zhang, D. Wang, F., Liang, Y., Miao, C. Xiao, F. Luo, (2019). DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics, 35: 4586–4595
https://doi.org/10.1093/bioinformatics/btz276
|
| 21 |
J. L., Weirather, M., de Cesare, Y., Wang, P., Piazza, V., Sebastiano, X. Wang, D. Buck, K. Au, (2017). Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000 Res., 6: 100
https://doi.org/10.12688/f1000research.10571.2
|
| 22 |
Z. W. Yuen, A., Srivastava, R., Daniel, D., McNevin, C. Jack, (2021). Systematic benchmarking of tools for CpG methylation detection from Nanopore sequencing. Nat. Commun., 12: 3438
https://doi.org/10.1038/s41467-021-23778-6
|
| 23 |
Q., Liu, L., Fang, G., Yu, D., Wang, C. Xiao, (2019). Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun., 10: 2449
https://doi.org/10.1038/s41467-019-10168-2
|
| 24 |
Y., Liu, W., Rosikiewicz, Z., Pan, N., Jillette, P., Wang, A., Taghbalout, J., Foox, C., Mason, M., Carroll, A. Cheng, et al.. (2021). DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol., 22: 295
https://doi.org/10.1186/s13059-021-02510-z
|
| 25 |
Y. ZhangK., YamaguchiS., HatakeyamaY., FurukawaS., Miyano R. Yamaguchi. (2021) On the application of bert models for Nanopore methylation detection. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 320–327
|
| 26 |
L., Jiao, F., Zhang, F., Liu, S., Yang, L., Li, Z. Feng, (2019). A survey of deep learning-based object detection. IEEE Access, 7: 128837–128868
https://doi.org/10.1109/ACCESS.2019.2939201
|
| 27 |
S. L., Amarasinghe, S., Su, X., Dong, L., Zappia, M. E. Ritchie, (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biol., 21: 30
https://doi.org/10.1186/s13059-020-1935-5
|
| 28 |
J., DevlinM. ChangK. Lee. (2018) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv, 181004805
|
| 29 |
A., VaswaniN. M., ShazeerN., ParmarJ., UszkoreitL., Jones A. N., GomezL. Kaiser. (2017) Attention is all you need. arXiv, 1706.03762
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|