Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 201-205    https://doi.org/10.1007/s11705-009-0052-5
RESEARCH ARTICLE
One-pot three-component Mannich reaction catalyzed by sucrose char sulfonic acid
Qiong XU, Zhigao YANG, Dulin YIN(), Jihui WANG
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Institute of Fine Catalysis and Synthesis, Hunan Normal University, Changsha 410081, China
 Download: PDF(119 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sucrose char sulfonic acid efficiently catalyzed the one-pot three-component Mannich reaction of ketones, aromatic aldehydes and amines in ethanol to afford the corresponding b-amino carbonyl compounds in good to excellent yields. A series of heteroaromatic b-amino carbonyl compounds can be obtained when using 2-acetylpyrazine as substrate. This reaction can be performed under mild reaction conditions with clean reaction profiles and a simple workup procedure.

Keywords One–pot synthesis      b-amino ketone      char sulfonic acid      2-acetylpyrazine      catalysis     
Corresponding Author(s): YIN Dulin,Email:dulinyin@126.com   
Issue Date: 05 June 2009
 Cite this article:   
Qiong XU,Zhigao YANG,Dulin YIN, et al. One-pot three-component Mannich reaction catalyzed by sucrose char sulfonic acid[J]. Front Chem Eng Chin, 2009, 3(2): 201-205.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0052-5
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/201
Fig.1  One-pot three-component Mannich reaction of aromatic aldehydes, aromatic amines and ketones in heterogenous acidic catalytic system
entries123time/hcatalyst/mol %yielda)/%mp/°C
1b)10291139-140 [19]
2c)30491137-138 [19]
3c)40459146-147
4c)15684146-147
5c)24476169-170 [33]
6c)24473140-142 [21]
7c)24477149-151
8d)30467152-153
9d)30459153-154
10d)30473153-153
11d)30455138-139
12d)30448140
13d)30474139
Tab.1  One-pot three-component Mannich reaction catalyzed by sucrose char sulfonic acid
1 Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem Rev , 1999, 99: 1069-1094
doi: 10.1021/cr980414z
2 Speckamp W N, Moolenaar M J. New developments in the chemistry of N-acyliminium ions and related intermediates. Tetrahedron , 2000, 56: 3817-3856
doi: 10.1016/S0040-4020(00)00159-9
3 Bur S K, Martin S F. Vinylogous Mannich reactions: selectivity and synthetic utility. Tetrahedron , 2001, 57: 3221-3242
doi: 10.1016/S0040-4020(01)00035-7
4 Coardova A. The direct catalytic asymmetric Mannich reaction. Acc Chem Res , 2004, 37: 102-112
doi: 10.1021/ar030231l
5 Davis F A, Zhang Y, Anilkumar G. Asymmetric synthesis of the quinolizidine alkaloid (–)-epimyrtine with intramolecular Mannich cyclization and N-sulfinyl δ-amino-β-ketoesters. J Org Chem , 2003, 68: 8061-8064
doi: 10.1021/jo030208d
6 Evans G B, Furneaux R H, Tyler P C. Synthesis of a transition state analogue inhibitor of purine nucleoside phosphorylase via the Mannich reaction. Org Lett , 2003, 5: 3639-3640
doi: 10.1021/ol035293q
7 Rivera A, Quevedo R. Solvent-free Mannich-type reaction as a strategy for synthesizing novel heterocalixarenes. Tetrahedron Lett , 2004, 45: 8335-8338
doi: 10.1016/j.tetlet.2004.09.066
8 Prukala D. New compounds via Mannich reaction of cytosine, paraformaldehyde and cyclic secondary amines. Tetrahedron Lett , 2006, 47: 9045-9047
doi: 10.1016/j.tetlet.2006.10.117
9 Córdova A, Barbas III C F. anti-Selective SMP-catalyzed direct asymmetric Mannich-type reactions: synthesis of functionalized amino acid derivatives. Tetrahedron Lett , 2002, 43: 7749-7752
doi: 10.1016/S0040-4039(02)01772-0
10 Cooke A, Bennett J, McDaid E. A facile synthesis of N-benzyl-4-acetylproline via a tandem cationic aza-Cope rearrangement-Mannich reaction. Tetrahedron Lett , 2002, 43: 903-905
doi: 10.1016/S0040-4039(01)02287-0
11 Chen S L, Ji S J, Loh T P. Asymmetric Mannich-type reactions catalyzed by indium(III) complexes in ionic liquids. Tetrahedron Lett , 2003, 44: 2405-2408
doi: 10.1016/S0040-4039(03)00189-8
12 Trost B M, Terrell L R. A direct catalytic asymmetric Mannich-type reaction to synamino alcohols. J Am Chem Soc , 2003, 125: 338-339
doi: 10.1021/ja028782e
13 Shibasaki M. Kumagai N, Harada S. anti-Selective direct catalytic asymmetric Mannich-type reaction of hydroxyketone providing β-amino alcohols. J Am Chem Soc , 2003, 125: 4712-4713
doi: 10.1021/ja034787f
14 Tremblay-Morin J P, Raeppel S, Gaudette F. Lewis acid-catalyzed Mannich type reactions with potassium organotrifluoroborates. Tetrahedron Lett , 2004, 45: 3471-3474
doi: 10.1016/j.tetlet.2004.03.014
15 Ollevier T, Nadeau E. Bismuth triflate-catalyzed three-component Mannich-type reaction. J Org Chem , 2004, 69: 9292-9295
doi: 10.1021/jo048617c
16 Josephsohn N S, Carswell E L, Snapper M L, Hoveyda A H. Practical and highly enantioselective synthesis of β-alkynyl-β-amino esters through Ag-catalyzed asymmetric Mannich reactions of silylketene acetals and alkynyl imines. Org Lett , 2005, 7: 2711-2713
doi: 10.1021/ol050910r
17 Urbaniak M, Iwanek W. Synthesis of alkoxymethyl derivatives of resorcinarene via the Mannich reaction catalysed with iminodiacetic acid. Tetrahedron , 2006, 62: 1508-1511
doi: 10.1016/j.tet.2005.11.017
18 Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H. Design of Br?nsted acid-assisted chiral Br?nsted acid catalyst bearing a bis(triflyl)methyl group for a Mannich-type reaction. Org Lett , 2006, 8: 3175-3178
doi: 10.1021/ol060939a
19 Yi W B, Cai Ch. Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth (III) perfluorooctane sulfonates catalysts in fluorous media. J Fluorine Chem , 2006, 127: 1515-1521
doi: 10.1016/j.jfluchem.2006.07.009
20 Fang D, Luo J, Zhou X L, Liu Z L. Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catal Lett , 2007, 116: 76-80
doi: 10.1007/s10562-007-9095-8
21 Yang D Ch, Zhang G L, Yang Y, Zhong Y G. The Mannich reaction of 4-methylacetophenone with aromatic aldehydes and aromatic amines. Chem J Chin Univ , 2000, 21: 1694-1696
22 Hayashi Y, Tsuboi W, Shoji M, Suzuki N. Application of high pressure induced by water-freezing to the direct catalytic asymmetric three-component list-barbas-Mannich reaction. J Am Chem Soc , 2003, 125: 11208-11209
doi: 10.1021/ja0372513
23 Joshi N S, Whitaker L R, Francis M B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc , 2004, 126: 15942-15943
doi: 10.1021/ja0439017
24 Pandey G, Singh R P, Garg A, Singh V K. Synthesis of Mannich type products via a three-component coupling reaction. Tetrahedron Lett , 2005, 46: 2137-2140
doi: 10.1016/j.tetlet.2005.01.118
25 Ollevier T, Nadeau E, Guay-Begin A. Direct-type catalytic three-component Mannich reaction in aqueous media. Tetrahedron Lett , 2006, 47: 8351-8354
doi: 10.1016/j.tetlet.2006.09.082
26 Azizi N, Torkiyan L, Saidi M R. Highly efficient one-pot three-component Mannich reaction in water catalyzed by heteropoly acids. Org Lett , 2006, 8: 2079-2082
doi: 10.1021/ol060498v
27 Hirose T, Sunazuka T, Yamamoto D, Kaji E, Omura S. Synthetic applications of a three-component Mannich reaction. Total synthesis of IL-6 inhibitor (+)-madindoline A and B. Tetrahedron Lett , 2006, 47: 6761-6764
doi: 10.1016/j.tetlet.2006.07.083
28 Wu M, Jing H W, Chang T. Synthesis of β-amino carbonyl compounds via a Mannich reaction catalyzed by SalenZn complex. Catal Commun , 2007, 8: 2217-2221
doi: 10.1016/j.catcom.2007.05.011
29 Harmer M A, Sun Q. Solid acid catalysis using ion-exchange resins. Appl Catal A , 2001, 221: 45-62
doi: 10.1016/S0926-860X(01)00794-3
30 Xu Y J, Gu W Q, Gin D L. Heterogeneous catalysis using a nanostructured solid acid resin based on lyotropic liquid crystals. J Am Chem Soc , 2004, 126: 1616-1617
doi: 10.1021/ja038501i
31 Yang L M, Wang Y J, Luo G S, Dai Y Y. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions. Micro Meso Mater , 2005, 84: 275-282
doi: 10.1016/j.micromeso.2005.05.037
32 Palaniappan S, John A. A novel polyaniline-fluoroboric acid-dodecylhydrogensulfate salt: versatile reusable polymer based solid acid catalyst for organic transformations. J Mol Catal A , 2005, 233: 9-15
doi: 10.1016/j.molcata.2005.02.002
33 Bigdeli M A, Nemati F, Mahdavinia G H. HClO4-SiO2 catalyzed stereoselective synthesis of β-amino ketones via a direct Mannich-type reaction. Tetrahedron Lett , 2007, 48: 6801-6804
doi: 10.1016/j.tetlet.2007.07.088
34 Xu Q, Yang Z G, Yin D L, Zhang F. Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo. Catal Commun , 2008, 9: 1579-1582
doi: 10.1016/j.catcom.2008.01.007
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[3] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[4] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[5] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[6] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[7] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[8] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[9] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[10] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[11] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[12] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[13] Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Front. Chem. Sci. Eng., 2018, 12(1): 103-112.
[14] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[15] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed