Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 450-460    https://doi.org/10.1007/s11705-015-1542-2
RESEARCH ARTICLE
Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration
Zhenhao Wei1,Tengfei Xia1,Minghui Liu1,Qingsheng Cao1,Yarong Xu1,2,Kake Zhu1,Xuedong Zhu1,*()
1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Research Institute of Urumchi Petrochemical Company, PetroChina Company Limited, Urumchi 830019, China
 Download: PDF(1707 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of alkaline treatment on the physical properties of ZSM-5 catalysts and on their activities for methanol to aromatics conversion have been investigated. A mild alkaline treatment (0.2 and 0.3 mol/L NaOH) created mesopores in the parent zeolite with no obvious effect on acidity. The presence of mesopores gives the catalyst a longer lifetime and higher selectivity for aromatics. Treatment with 0.4 mol/L NaOH decreased the number of Brønsted acid sites due to dealumination and desilication, which resulted in a lower deactivation rate. In addition, more mesopores were produced than with the mild alkaline treatment. As a result, the lifetime of the sample treated with 0.4 mol/L NaOH was almost five times that of the parent ZSM-5. Treatment with a higher alkaline concentration (0.5 mol/L) greatly reduced the number of Brønsted acid sites and the number of micropores resulting in incomplete methanol conversion. When the alkaline-treated catalysts were washed with acid, some of the porosity was restored and a slight increase in selectivity for aromatics was obtained.

Keywords aromatics      ZSM-5      alkaline treatment      dealumination      desilication      mesopores      methanol     
Corresponding Author(s): Xuedong Zhu   
Online First Date: 16 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Kake Zhu,Xuedong Zhu,Zhenhao Wei, et al. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1542-2
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/450
Fig.1  XRD patterns of the parent and modified ZSM-5 samples
Fig.2  SEM of the parent and modified HZSM-5 samples. (a and b): R; (c) AT0.2; (d and e): AT0.5 (the scale bar of Fig. 2(e) is 2 µm)
Sample Si/Ala) Al/mg·g−1 SBETb) /m2·g−1 Smesoc) /m2·g−1 Vtotald) /cm3·g−1 Vmicroc) /cm3·g−1
R 23.7 18 255 42 0.15 0.12
AT0.2 21.3 18 274 69 0.18 0.12
AT0.3 18.5 19 286 103 0.23 0.12
AT0.4 16.8 18 324 146 0.26 0.12
AT0.5 17.3 16 307 130 0.28 0.09
AT0.5-AW0.1 18.9 15 339 167 0.32 0.10
Tab.1  Chemical composition and textural properties of the parent and modified ZSM-5 samples
Fig.3  N2 adsorption-desorption isotherms of (a) R, AT0.2, AT0.3, and AT0.4 and (b) AT0.5 and AT0.5-AW0.1
Fig.4  BJH mesopore distributions derived from the isotherm adsorption branches for the parent and alkaline-treated zeolites
Fig.5  NH3-TPD patterns of (a) R, AT0.2, AT0.3, and AT0.4 and (b) AT0.5 and AT0.5-AW0.1
Sample Acidity by strengtha) /mmol·g−1 Acidity by typeb) /mmol·g−1
S W Total L B Total
R 0.579 0.471 1.050 0.088 0.554 0.642
AT0.2 0.572 0.460 1.045
AT0.3 0.536 0.443 1.029 0.093 0.550 0.643
AT0.4 0.483 0.423 0.906 0.131 0.398 0.529
AT0.5 0.359 0.363 0.722 0.050 0.184 0.234
AT0.5-AW0.1 0.363 0.346 0.709
Tab.2  Acidic properties of the parent and modified ZSM-5 samples
Fig.6  Pyridine infrared spectra for samples R, AT0.3, AT0.4 and AT0.5
Catalysts Conversion /% Selectivity /% SBTXb) /%
M O P C5+ Aro
R 100 4.1 2.0 43.2 9.1 41.6 30.6
AT0.2 100 3.7 6.2 32.8 10.9 46.4 38.3
AT0.3 100 2.9 4.4 33.2 9.3 50.2 40.7
AT0.4 100 2.4 4.9 31.9 14.7 46.1 34.7
AT0.5 95 5.1 10.1 39.3 8.6 36.9 25.6
AT0.5-AW0.1 97 4.5 12.0 36.7 7.5 39.3 27.1
Tab.3  Product distribution of MTA reactions with different catalystsa)
Fig.7  (a) Methanol conversion and (b) selectivity for BTX versus time on stream (reaction conditions: 400 °C, 1 atm, WHSV=1.0 h−1)
Fig.8  TGA profiles of used catalysts after 8 h on stream
Fig.9  (a) Methanol conversion and (b) selectivity for BTX versus time on stream for two reaction-regeneration cycles (reaction conditions: 400 °C, 1atm, WHSV= 1.0 h−1)
1 Olsbye  U, Svelle  S, Bjørgen  M, Beato  P, Janssens  T V W, Joensen  F, Bordiga  S, Lillerud  K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810–5831
https://doi.org/10.1002/anie.201103657
2 Ilias  S, Bhan  A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31
https://doi.org/10.1021/cs3006583
3 Shen  K, Wang  N, Qian  W, Cu  Y, Wei  F. Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science & Technology, 2014, 4(11): 3840–3844
https://doi.org/10.1039/C4CY01010H
4 Niu  X J, Gao  J, Miao  Q, Dong  M, Wang  G F, Fan  W B, Qin  Z F, Wang  J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous and Mesoporous Materials, 2014, 197(0): 252–261
https://doi.org/10.1016/j.micromeso.2014.06.027
5 Zhang  G Q, Bai  T, Chen  T F, Fan  W T, Zhang  X. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940
https://doi.org/10.1021/ie5021156
6 Wang  T, Tang  X P, Huang  X F, Qian  W Z, Cui  Y, Hui  X Y, Yang  W, Wei  F. Conversion of methanol to aromatics in fluidized bed reactor. Catalysis Today, 2014, 233: 8–13
https://doi.org/10.1016/j.cattod.2014.02.007
7 Ni  Y M, Sun  A M, Wu  X L, Hu  J L, Li  T, Li  G X. Aromatization of methanol over La/Zn/HZSM-5 catalysts. Chinese Journal of Chemical Engineering, 2011, 19(3): 439–445
https://doi.org/10.1016/S1004-9541(11)60004-9
8 Bleken  F, Skistad  W, Barbera  K, Kustova  M, Bordiga  S, Beato  P, Lillerud  K P, Svelle  S, Olsbye  U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Physical Chemistry Chemical Physics, 2011, 13(7): 2539–2549
https://doi.org/10.1039/C0CP01982H
9 Védrine  J C, Auroux  A, Bolis  V, Dejaifve  P, Naccache  C, Wierzchowski  P, Derouane  E G, Nagy  J B, Gilson  J P, van Hooff  J H C, van den Berg  J P, Wolthuizen  J. Infrared, microcalorimetric, and electron spin resonance investigations of the acidic properties of the H-ZSM-5 zeolite. Journal of Catalysis, 1979, 59(2): 248–262
https://doi.org/10.1016/S0021-9517(79)80029-9
10 Hartmann  M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
https://doi.org/10.1002/anie.200460644
11 Guisnet  M, Costa  L, Ribeiro  F R. Prevention of zeolite deactivation by coking. Journal of Molecular Catalysis A Chemical, 2009, 305(1−2): 69–83
https://doi.org/10.1016/j.molcata.2008.11.012
12 Bao  S, Liu  G, Zhang  X, Wang  L, Mi  Z. New method of catalytic cracking of hydrocarbon fuels using a highly dispersed nano-HZSM-5 catalyst. Industrial & Engineering Chemistry Research, 2010, 49(8): 3972–3975
https://doi.org/10.1021/ie901801q
13 Perez-Ramirez  J, Christensen  C H, Egeblad  K, Christensen  C H, Groen  J C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
https://doi.org/10.1039/b809030k
14 Zhu  K K, Sun  J M, Zhang  H, Liu  J, Wang  Y. Carbon as a hard template for nano material catalysts. Journal of Natural Gas Chemistry, 2012, 21(3): 215–232
https://doi.org/10.1016/S1003-9953(11)60357-5
15 Xiao  F S, Wang  L, Yin  C, Lin  K, Di  Y, Li  J, Xu  R, Su  D S, Schlögl  R, Yokoi  T, Tatsumi  T. Catalytic properties of hierarchical mesoporous Zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093
https://doi.org/10.1002/anie.200600241
16 Davis  S A, Burkett  S L, Mendelson  N H, Mann  S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423
https://doi.org/10.1038/385420a0
17 Groen  J C, Moulijn  J A, Pérez-Ramírez  J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131
https://doi.org/10.1039/b517510k
18 Bjørgen  M, Joensen  F, Spangsberg Holm  M, Olsbye  U, Lillerud  K P, Svelle  S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50
https://doi.org/10.1016/j.apcata.2008.04.020
19 Su  L P, Liu  L, Zhuang  J Q, Wang  H X, Li  Y G, Shen  W J, Xu  Y, Bao  X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters, 2003, 91(3−4): 155–167
https://doi.org/10.1023/B:CATL.0000007149.48132.5a
20 Tao  Y S, Kanoh  H, Abrams  L, Kaneko  K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
https://doi.org/10.1021/cr040204o
21 Aramburo  L R, Karwacki  L, Cubillas  P, Asahina  S, de Winter  D A M, Drury  M R, Buurmans  I L C, Stavitski  E, Mores  D, Daturi  M, Bazin  P, Dumas  P, Thibault-Starzyk  F, Post  J A, Anderson  M W, Terasaki  O, Weckhuysen  B M. The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(49): 13773–13781
https://doi.org/10.1002/chem.201101361
22 Sheng  Q, Ling  K, Li  Z, Zhao  L. Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. Fuel Processing Technology, 2013, 110(0): 73–78
https://doi.org/10.1016/j.fuproc.2012.11.004
23 van Donk  S, Janssen  A H, Bitter  J H, de Jong  K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
https://doi.org/10.1081/CR-120023908
24 Schmidt  F, Lohe  M R, B°Chner  B, Giordanino  F, Bonino  F, Kaskel  S. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, 2013, 165: 148–157
https://doi.org/10.1016/j.micromeso.2012.07.045
25 Groen  J C, Jansen  J C, Moulijn  J A, Pérez-Ramírez  J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 108(35): 13062–13065
https://doi.org/10.1021/jp047194f
26 Ogura  M, Shinomiya  S Y, Tateno  J, Nara  Y, Nomura  M, Kikuchi  E, Matsukata  M. Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A, General, 2001, 219(1−2): 33–43
https://doi.org/10.1016/S0926-860X(01)00645-7
27 Groen  J C, Moulijn  J A, Pérez-Ramírez  J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination. Microporous and Mesoporous Materials, 2005, 87(2): 153–161
https://doi.org/10.1016/j.micromeso.2005.07.050
28 Fernandez  C, Stan  I, Gilson  J P, Thomas  K, Vicente  A, Bonilla  A, Pérez-Ramírez  J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(21): 6224–6233
https://doi.org/10.1002/chem.200903426
29 Verboekend  D, Mitchell  S, Milina  M, Groen  J C, Pérez-Ramírez  J. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. Journal of Physical Chemistry C, 2011, 115(29): 14193–14203
https://doi.org/10.1021/jp201671s
30 Groen  J, Peffer  L, Moulijn  J, Pérez-Ramırez  J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1−3): 53–58
https://doi.org/10.1016/j.colsurfa.2004.04.012
31 Ni  Y M, Sun  A M, Wu  X L, Hai  G L, Hu  J, Li  T, Li  G X. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237–242
https://doi.org/10.1016/S1003-9953(10)60184-3
32 Verboekend  D, Chabaneix  A M, Thomas  K, Gilson  J P, Perez-Ramirez  J. Mesoporous ZSM-22 zeolite obtained by desilication: Peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm, 2011, 13(10): 3408–3416
https://doi.org/10.1039/c0ce00966k
33 Groen  J C, Peffer  L A, Pérez-Ramírez  J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 2003, 60(1−3): 1–17
https://doi.org/10.1016/S1387-1811(03)00339-1
34 Niwa  M, Katada  N. Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catalysis Surveys from Asia, 1997, 1(2): 215–226
https://doi.org/10.1023/A:1019033115091
35 Stöcker  M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1-2): 3–48
https://doi.org/10.1016/S1387-1811(98)00319-9
36 Emeis  C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993, 141(2): 347–354
https://doi.org/10.1006/jcat.1993.1145
37 Aguayo  A T, Mier  D, Gayubo  A G, Gamero  M N, Bilbao  J. Kinetics of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst at high temperature (400-550 °C). Industrial & Engineering Chemistry Research, 2010, 49(24): 12371–12378
https://doi.org/10.1021/ie101047f
38 Armaroli  T, Bevilacqua  M, Trombetta  M, Milella  F, Alejandre  A G, Ramírez  J, Notari  B, Willey  R J, Busca  G. Alejandre  A d G, Ramírez  J, Notari  B, Willey  R J, Busca  G. A study of the external and internal sites of MFI-type zeolitic materials through the FT-IR investigation of the adsorption of nitriles. Applied Catalysis A, General, 2001, 216(1−2): 59–71
https://doi.org/10.1016/S0926-860X(01)00543-9
39 He  Y P, Liu  M, Dai  C Y, Xu  S T, Wei  Y X, Liu  Z M, Guo  X W. Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction. Chinese Journal of Catalysis, 2013, 34(6): 1148–1158
https://doi.org/10.1016/S1872-2067(12)60579-8
40 Song  Y Q, Zhu  X X, Xie  S J, Wang  Q X, Xu  L Y. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts. Catalysis Letters, 2004, 97(1−2): 31–36
https://doi.org/10.1023/B:CATL.0000034281.58853.76
41 Ramasamy  K K, Zhang  H, Sun  J, Wang  Y. Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catalysis Today, 2014, 238: 103–110
https://doi.org/10.1016/j.cattod.2014.01.037
42 Kim  J, Choi  M, Ryoo  R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269(1): 219–228
https://doi.org/10.1016/j.jcat.2009.11.009
43 Rownaghi  A A, Rezaei  F, Hedlund  J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials, 2012, 151: 26–33
https://doi.org/10.1016/j.micromeso.2011.11.020
44 Ivanov  D P, Pirutko  L V, Panov  G I. Effect of steaming on the catalytic performance of ZSM-5 zeolite in the selective oxidation of phenol by nitrous oxide. Journal of Catalysis, 2014, 311: 424–432
https://doi.org/10.1016/j.jcat.2013.12.010
45 Kim  S, Sasmaz  E, Lauterbach  J. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts. Applied Catalysis B: Environmental, 2015, 168−169: 212–219
https://doi.org/10.1016/j.apcatb.2014.12.027
46 Zhang  G Q, Zhang  X, Bai  T, Chen  T F, Fan  W T. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization. Journal of Energy Chemistry, 2015, 24(1): 108–118
https://doi.org/10.1016/S2095-4956(15)60291-1
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[3] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[4] Hao Xu, Chi Lei, Qinming Wu, Qiuyan Zhu, Xiangju Meng, Daniel Dai, Stefan Maurer, Andrei-Nicolae Parvulescu, Ulrich Müller, Fengshou Xiao. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction[J]. Front. Chem. Sci. Eng., 2020, 14(2): 267-274.
[5] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[6] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[7] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[8] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[9] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[10] Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
[11] Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
[12] Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction[J]. Front. Chem. Sci. Eng., 2017, 11(4): 564-574.
[13] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[14] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[15] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed