Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (2) : 369-376    https://doi.org/10.1007/s11705-018-1734-7
RESEARCH ARTICLE
The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae
Long Cheng1,2, Ruirui Zhang2, Hongke Wu1, Xinghai Liu1(), Tianming Xu2()
1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of novel 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives were designed and synthesized. Bioassay results showed that some of them exhibited good activity against Pyricularia oryzae (P. oryzae). It was found that the compound 5q (benzyl (6-(tert-butyl)-8-fluoro-2,3-dimethylquinolin-4-yl) carbonate) possessed good activity against P. oryzae whatever protective activity (10 mg·L1) or curative activity (25 mg·L1), which was better than that of control tebufloquin. In addition, the frontier molecular orbit results revealed that the compound held higher activity against P. oryzae when the total energy was low and the ClogP was high, which may provide useful information for further design novel fungicides.

Keywords quinoline      synthesis      antifungal activity      rice blast      SAR     
Corresponding Author(s): Xinghai Liu,Tianming Xu   
Online First Date: 17 July 2018    Issue Date: 22 May 2019
 Cite this article:   
Long Cheng,Ruirui Zhang,Hongke Wu, et al. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1734-7
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I2/369
Fig.1  Scheme 1 Design strategy of the title compounds
Fig.2  Scheme 2 The synthetic route of title compounds
No. R 100/(mg?L?1) 50/(mg?L?1) 10/(mg?L?1)
5a 4-Me 100 95 65
5b 4-Br 100 80 55
5c 3,4-Cl2 100 85 70
5d 4-OMe 100 99 65
5e 4-F 100 90 80
5f 4-Cl 100 85 45
5g 2,4-Cl2 100 80 30
5h 2-Cl 100 65 35
5i 2-F 100 75 30
5j 2-Me 100 75 40
5k 3-Me 100 75 45
5l 3-F 100 70 34
5m 2,6-Cl2 100 85 45
5n 2,4-F2 100 90 75
5o 2-Cl-6-F 95 70 50
5p 2-Cl-5-CF3 100 75 45
5q H 100 95 75
Tebufloquin 100 70 0
Tab.1  The in vivo protective efficacy against rice blast at different concentration
No. R 100/(mg?L?1) 50/(mg?L?1) 25/(mg?L?1)
5a 4-Me 85 65 25
5b 4-Br 80 45 0
5c 3,4-Cl2 90 75 45
5d 4-OMe 85 65 35
5e 4-F 85 65 35
5f 4-Cl 65 35 0
5g 2,4-Cl2 80 45 0
5h 2-Cl 75 35 0
5i 2-F 85 50 0
5j 2-Me 65 55 25
5k 3-Me 90 45 0
5l 3-F 75 35 0
5m 2,6-Cl2 85 40 0
5n 2,4-F2 75 70 0
5o 2-Cl-6-F 75 35 0
5p 2-Cl-5-CF3 75 45 0
5q H 90 65 45
Tebufloquin 70 45 0
Tab.2  The in vivo curative efficacy against rice blast at different concentration
Compound EC50/(mg?L?1) Y = BX + A R
5a 2.79(1.72–4.58) 4.7522+ 0.5567X 0.98
5c 3.59(2.31–5.82) 4.6658+ 0.6018X 0.98
5d 0.94(0.61–1.37) 5.0203+ 0.7815X 0.98
5e 6.77(4.93–9.57) 4.2012+ 0.9621X 0.99
5q 5.18(3.68–7.66) 4.4027+ 0.8363X 0.99
Tebufloquin 1.27(0.91–1.70) 4.8943+ 1.0124X 0.99
Tab.3  The EC50 of high active compound against rice blast (in vitro)
DFT 5q 5d Tebufloquin
Etotal/Hartreea ?1270.85620776 ?1385.33947946 ?1865.96608237
EHOMO/Hartree ?0.22710 ?0.22504 ?0.22894
ELUMO/Hartree ?0.05235 ?0.05014 ?0.07096
DEb/Hartree 0.17475 0.1749 0.15798
CLogP 6.33 6.95 4.81
Tab.4  CLogP, total energy, energy gap and frontier orbital energy
Fig.3  Frontier molecular orbitals of compound 5q, 5d and tebufloquin
1 WKramer, U Schirmer. Modern Crop Protection Compounds.Weinheim: Wiley-VCH, 2007, 1141
2 MGobeil-Richard, D M Tremblay, C Beaulieu, H Van der Heyden, OCarisse. A pyrosequencing-based method to quantify genetic substitutions associated with resistance to succinate dehydrogenase inhibitor fungicides in Botrytis spp. populations. Pest Management Science, 2016, 72(3): 566–573
https://doi.org/10.1002/ps.4026 pmid: 25900263
3 WHidalgo, M Cano, MArbelaez, EZarrazola, JGil, B Schneider, FOtálvaro. 4-Phenylphenalenones as a template for new photodynamic compounds against Mycosphaerella fijiensis. Pest Management Science, 2016, 72(4): 796–800
https://doi.org/10.1002/ps.4055 pmid: 26058960
4 P LJohnson, J Kister, SThornburgh. Improved synthetic route to quinoxyfen photometabolite 2-chloro-10-fluorochromeno[2,3,4-de]quinoline. Pest Management Science, 2017, 73(8): 1703–1708
https://doi.org/10.1002/ps.4517 pmid: 28058778
5 DBellón-Gómez, DVela-Corcía, APérez-García, J ATorés. Sensitivity of Podosphaera xanthii populations to anti-powdery-mildew fungicides in Spain. Pest Management Science, 2015, 71(10): 1407–1413
https://doi.org/10.1002/ps.3943 pmid: 25418926
6 MMatsumura, M Mitomi, M BYabusaki. Actericidal Mixed Composition for Agriculture and Horticulture.JP Patent, 2 007 112 760, 2005
7 SKiguchi, S Tanaka, MOzawa, AIwata. Plant disease controlling composition and method for controlling plant disease.US Patent, 8940717, 2015
8 YNakajima, Y Okawara. Pesticidal composition containing condensed heterocyclic compound and other agrochemically active component, and pest control method.JP Patent, 2 016 102 104, 2016
9 XShi, P Kou, MLi, HZhao, X Wu, PDa, HMei, B Liang, HLu, DZhou, et al.Composition for preventing and treating rice blast, comprises fenaminstrobin and isotianil, carpropamid, 4,5,6,7-tetrachlorophthalide or tebufloquin.CN Patent, 103 271 076, 2014
10 OSakurais, M Morimoto, IKondon. Plant disease control composition useful for controlling plant disease from plant pathogens such as rice blast caused by Pyricularia oryzae, comprises quinoline compounds and fungicidal compound e.g. fluxapyroxad and benzovindiflupyr.WO Patent, 2 015 141 867, 2015
11 N.KimuraComposition contains carboxamide compound, isotianil, diclocymet, probenazole, orysastrobin, tiadinil, tricyclazole, sulfoxaflor, dinotefuran, thiamethoxam, imidacloprid, fipronil, tetraniliprole and spinosad.JP Patent, 2 015 214 554, 2015
12 P PJain, M S Degani, A Raju, AAnantram, MSeervi, SSathaye, MRay, M G R Rajan. Identification of a novel class of quinoline-oxadiazole hybrids as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry Letters, 2016, 26(2): 645–649
https://doi.org/10.1016/j.bmcl.2015.11.057 pmid: 26675440
13 P RKamath, D Sunil, A AAjees. Synthesis of indole-quinoline-oxadiazoles: their anticancer potential and computational tubulin binding studies. Research on Chemical Intermediates, 2016, 42(6): 5899–5914
https://doi.org/10.1007/s11164-015-2412-8
14 M OPuskullu, H Shirinzadeh, MNenni, HGurer-Orhan, SSuzen. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(1): 121–125
https://doi.org/10.3109/14756366.2015.1005012 pmid: 25942363
15 RGhodsi, E Azizi, M GFerlin, VPezzi, AZarghi. Design, synthesis and biological evaluation of 4-(imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Letters in Drug Design & Discovery, 2016, 13(1): 89–97
https://doi.org/10.2174/1570180812666150611185605
16 ODi Pietro, E Vicente-García, M CTaylor, DBerenguer, EViayna, ALanzoni, ISola, H Sayago, CRiera, RFisa, M V Clos, B Pérez, J MKelly, RLavilla, DMuñoz-Torrero. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. European Journal of Medicinal Chemistry, 2015, 105: 120–137
https://doi.org/10.1016/j.ejmech.2015.10.007 pmid: 26479031
17 J CCoa, W Castrillón, WCardona, MCarda, VOspina, J AMuñoz, I DVélez, S MRobledo. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. European Journal of Medicinal Chemistry, 2015, 101: 746–753
https://doi.org/10.1016/j.ejmech.2015.07.018 pmid: 26218652
18 XHuang, Y Bao, SZhu, XZhang, SLan, T Wang. Synthesis and biological evaluation of levofloxacin core-based derivatives with potent antibacterial activity against resistant Gram-positive pathogens. Bioorganic & Medicinal Chemistry Letters, 2015, 25(18): 3928–3932
https://doi.org/10.1016/j.bmcl.2015.07.044 pmid: 26238324
19 S LYan, M Y Yang, Z H Sun, L J Min, C X Tan, J Q Weng, H K Wu, X H Liu. Synthesis and antifungal activity of 1,2,3-thiadiazole derivatives containing 1,3,4-thiadiazole moiety. Letters in Drug Design & Discovery, 2014, 11(7): 940–943
https://doi.org/10.2174/1570180811666140423222141
20 L JZhang, M Y Yang, Z H Sun, C X Tan, J Q Weng, H K Wu, X H Liu. Synthesis and antifungal activity of 1,3,4-thiadiazole derivatives containing pyridine group. Letters in Drug Design & Discovery, 2014, 11(9): 1107–1111
https://doi.org/10.2174/1570180811666140610212731
21 Y MFang, R R Zhang, Z H Shen, C X Tan, J Q Weng, T M Xu, X H Liu, H Y Huang, H K Wu. Synthesis and antifungal activity of some 6-tert-butyl-8-chloro-2,3-dimethylquinolin-4-ol derivatives against Pyricularia oryae. Letters in Drug Design & Discovery, 2018, 15:
https://doi.org/10.2174/1570180815666180313121735
22 Y MFang, R R Zhang, Z H Shen, H K Wu, C X Tan, J Q Weng, T M Xu, X H Liu. Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives. Journal of Heterocyclic Chemistry, 2018, 55(1): 240–245
https://doi.org/10.1002/jhet.3031
23 M JFrisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, et al.. Gaussian 03, revision C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2004
24 X HLiu, Y M Fang, F Xie, R RZhang, Z HShen, C XTan, J QWeng, T MXu, H YHuang. Synthesis and in vivo fungicidal activity of some new quinoline derivatives against rice blast. Pest Management Science, 2017, 73(9): 1900–1907
https://doi.org/10.1002/ps.4556 pmid: 28218818
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[3] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[4] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[5] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[6] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Viviana Maffeis, Lisa Moni, Daniele Di Stefano, Silvia Giordani, Renata Riva. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions[J]. Front. Chem. Sci. Eng., 2020, 14(1): 76-89.
[9] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[10] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[11] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[12] Xiaoming Ding, Zhiwen Zhai, Luping Lv, Zhaohui Sun, Xinghai Liu. Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety[J]. Front. Chem. Sci. Eng., 2017, 11(3): 379-386.
[13] Wen Zhao, Jiahua Xing, Tianming Xu, Weili Peng, Xinghai Liu. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Front. Chem. Sci. Eng., 2017, 11(3): 363-368.
[14] Lidan Ye,Xiaomei Lv,Hongwei Yu. Assembly of biosynthetic pathways in Saccharomyces cerevisiae using a marker recyclable integrative plasmid toolbox[J]. Front. Chem. Sci. Eng., 2017, 11(1): 126-132.
[15] Hui Wan,Yu Xia,Jianghua Li,Zhen Kang,Jingwen Zhou. Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003[J]. Front. Chem. Sci. Eng., 2017, 11(1): 72-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed