Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 320-324    https://doi.org/10.1007/s11783-009-0030-7
Research articles
Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon
Junxiong LIN , Lan WANG ,
College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China;
 Download: PDF(130 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The best-fit equations of linear and non-linear forms of the two widely used kinetic models, namely pseudo-first-order and pseudo-second-order equations, were compared in this study. The experimental kinetics of methylene blue adsorption on activated carbon was used for this research. Both the correlation coefficient (R2) and the normalized standard deviation Δq(%) were employed as error analysis methods to determine the best-fitting equations. The results show that the non-linear forms of pseudo-first-order and pseudo-second-order models were more suitable than the linear forms for fitting the experimental data. The experimental kinetics may have been distorted by linearization of the linear kinetic equations, and thus, the non-linear forms of kinetic equations should be primarily used to obtain the adsorption parameters. In addition, the Δq(%) method for error analysis may be better to determine the best-fitting model in this case.
Keywords adsorption      pseudo-first order      pseudo-second order      kinetic model      linear method      non-linear method      
Issue Date: 05 September 2009
 Cite this article:   
Junxiong LIN,Lan WANG. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon[J]. Front.Environ.Sci.Eng., 2009, 3(3): 320-324.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0030-7
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/320
Wu F C, Tseng R L, Juang R S. Kinetic modeling of liquid-phase adsorption of reactivedyes and metal ions on chitosan. WaterResearch, 2001, 35(3): 613―618

doi: 10.1016/S0043-1354(00)00307-9
Tan I A W, Ahmad A L, Hameed B H. Adsorption of basic dye on high-surface-area activatedcarbon prepared from coconut husk: Equilibrium, kinetic and thermodynamicstudies. Journal of Hazardous Materials, 2008, 154(1—3): 337―346

doi: 10.1016/j.jhazmat.2007.10.031
Lagergren S. Aboutthe theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24: 1―39
Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of naturalzeolites. Water Research, 1984, 18: 1501―1507

doi: 10.1016/0043-1354(84)90124-6
Ho Y S. Adsorption of heavy metals from waste streams by peat. Dissertation for the Doctoral Degree. Birmingham: University of Birmingham, 1995
Azizian S. Kineticmodels of sorption: A theoretical analysis. Journal of Colloid and Interface Science, 2004, 276: 47―52

doi: 10.1016/j.jcis.2004.03.048
Ho Y S. Selection of optimum sorption isotherm. Carbon, 2004, 42(10): 2115―2116

doi: 10.1016/j.carbon.2004.03.019
Vasanth K K, Sivanesan S. Comparison of linear andnon-linear method in estimating the sorption isotherm parameters forsafranin onto activated carbon. Journalof Hazardous Materials, 2005, B123(1-3): 288―292
Tsai S C, Juang K W. Comparison of linear andnonlinear forms of isotherm models for strontium sorption on a sodiumbentonite. Journal of Radioanalytical andNuclear Chemistry, 2000, 243(3): 741―746

doi: 10.1023/A:1010694910170
Azizian S, Haerifar M, Basiri-Parsa J. Extended geometric method: A simple approach to deriveadsorption rate constants of Langmuir―Freundlich kinetics. Chemosphere, 2007, 68: 2040―2046

doi: 10.1016/j.chemosphere.2007.02.042
Ho Y S. Second-order kinetic model for the sorption of cadmium onto treefern: A comparison of linear and non-linear methods. Water Research, 2006, 40(1): 119―125

doi: 10.1016/j.watres.2005.10.040
Yasmin K, Kalpana M, Shaik B, Bhavanath J. Pseudo-second-orderkinetic models for the sorption of Hg(II) onto dead biomass of marine Aspergillus niger: Comparison of linearand non-linear methods. Colloids and SurfacesA: Physicochemical and Engineering Aspects, 2008, 328: 40―43

doi: 10.1016/j.colsurfa.2008.06.017
Lin J X, Zhan S L, Fang M H, Qian X Q. The adsorptionof dyes from aqueous solution using diatomite. Journal of Porous Materials, 2007, 14(4): 449―455

doi: 10.1007/s10934-006-9039-5
Lin J X, Zhan S L, Fang M H, Qian X Q, Yang H. Adsorption of basic dye from aqueoussolution onto fly ash. Journal of EnvironmentalManagement, 2008, 87(1): 193―200

doi: 10.1016/j.jenvman.2007.01.001
Royer B, Cardoso N F, Lima E C, Vaghetti J C P, Simon N M, Calvete T, Veses R C. Applicationsof Brazilian-pine fruit shell in natural and carbonized forms as adsorbentsto removal of methylene blue from aqueous solutions—Kineticand equilibrium study. Journal of HazardousMaterials, 2009, 164(2-3): 1213―1222

doi: 10.1016/j.jhazmat.2008.09.028
Vaghetti J C P, Lima E C, Royer B, Cunha B M D, Cardoso N F, Brasil J L, Dias S L P. Pecan nutshellas biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. Journal of Hazardous Materials, 2009,162, 270―280

doi: 10.1016/j.jhazmat.2008.05.039
Vaghetti J C P, Lima E C, Royer B, Brasil J L, Cunha B M D, Simon N M, Cardoso N F, Noreña CP Z. Applicationof Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI)from aqueous solution—Kinetics and equilibrium study. Biochemical Engineering Journal, 2008, 42: 67―76

doi: 10.1016/j.bej.2008.05.021
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[6] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[11] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[12] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed