Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 412-419    https://doi.org/10.1007/s11783-013-0483-6
RESEARCH ARTICLE
Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid
Qing ZHOU, Mengqiao WANG, Aimin LI(), Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
 Download: PDF(253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m2·g-1) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g-1, weak base anion exchange capacity, WEC: 0.45 mmol·g-1). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.

Keywords high surface area      adsorption      anion exchange      micropollutant      dissolved organic matters     
Corresponding Author(s): LI Aimin,Email:liaimin@nju.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Qing ZHOU,Mengqiao WANG,Aimin LI, et al. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid[J]. Front Envir Sci Eng, 2013, 7(3): 412-419.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0483-6
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/412
Fig.1  Steps for preparing the bifunctional resin (MENQ)
Fig.2  FTIR spectra of the bifunctional resin: (a) poly(DVB-co-MA); (b) post-crosslinked resin; (c) ammonolysed resin and (d) alkylated resin (MENQ)
Fig.3  SEM image of MENQ
resinmatrixWEC /(mmol·g-1)SEC /(mmol·g-1)specific surface area /(m2·g-1)average pore diameter /nm
MENQDVB-MA (7:3)0.450.74793.345.42
XAD-4DVB--846.785.80
Tab.1  Physicochemical properties of the employed resins
Fig.4  Adsorption kinetics of (a) TC and (b) HA onto MENQ and XAD-4 at 288 K, and modeling of the adsorption onto the adsorbates (initial concentrations= 100 mg·L)
resintarget compoundfirst-order kinetic modelsecond-order kinetic model
k1/(10-3)qeR2k2/(10-5)qeR2
MENQTC2.9299.360.98802.45103.230.9955
XAD-4TC6.79104.810.96767.25117.280.9934
MENQHA7.8640.670.970122.8145.520.9950
Tab.2  Kinetic parameters for the adsorption of TC and HA onto the investigated resins
Fig.5  Effects of the pH of the solution on the adsorption of TC and HA onto both adsorbents
Fig.6  Adsorption isotherms of (a) TC on MENQ; (b) TC on XAD-4; (c) HA on MENQ at 288K, 303K, and 318K
adsorbenttarget compoundT/KLangmuir modelFreundlich model
KL /(10-3, L·mg-1)Qm /(mg·g-1)R2KF /(mg·g-1)n1/nR2
MENQTC28822.76175.520.931025.893.120.320.9989
30324.94191.960.953830.083.200.310.9908
31844.96194.190.896745.063.890.260.9949
XAD-4TC28833.12174.300.922734.933.630.280.9933
30362.60177.370.860649.834.390.230.9929
31870.37191.850.877855.714.450.220.9920
MENQHA2886.44104.770.98104.092.010.500.9936
3038.62103.050.98296.102.270.440.9967
3186.93143.320.98845.822.020.500.9893
Tab.3  Constants for the Langmuir and Freundlich equations at 288 K, 303 K, and 318 K
Fig.7  Effect of HA on the adsorption of TC onto MENQ
Fig.8  Effect of regeneration cycles on the adsorption capacity of MENQ for HA and TC (initial concentrations= 100 mg·L)
1 Deng S B, Yu Q, Huang J, Yu G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry. Water Research , 2010, 44(18): 5188-5195
doi: 10.1016/j.watres.2010.06.038 pmid:20605036
2 Bolto B, Dixon D, Eldridge R, King S, Linge K. Removal of natural organic matter by ion exchange. Water Research , 2002, 36(20): 5057-5065
doi: 10.1016/S0043-1354(02)00231-2 pmid:12448554
3 Humbert H, Gallard H, Suty H, Croué J P. Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Research , 2005, 39(9): 1699-1708
doi: 10.1016/j.watres.2005.02.008 pmid:15899268
4 Shuang C D, Pan F, Zhou Q, Li A M, Li P H, Yang W. Magnetic polyacrylic anion exchange resin: preparation, characterization and adsorption behavior of humic acid. Industrial & Engineering Chemistry Research , 2012, 51(11): 4380-4387
doi: 10.1021/ie201488g
5 Wang J N, Li A M, Zhou Y, Xu L. Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity. Chinese Chemical Letters , 2009, 20(12): 1478-1482
doi: 10.1016/j.cclet.2009.07.013
6 Beaber J W, Hochhut B, Waldor M K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature , 2004, 427(6969): 72-74
7 Humbert H, Gallard H, Suty H, Croué J P. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Research , 2008, 42(6-7): 1635-1643
doi: 10.1016/j.watres.2007.10.012 pmid:18006038
8 Senevirathna S T M L D, Tanaka S, Fujii S, Kunacheva C, Harada H, Ariyadasa B H A K T, Shivakoti B R. Adsorption of perfluorooctane sulfonate (n-PFOS) onto non ion-exchange polymers and granular activated carbon: Batch and column test. Desalination , 2010, 260(1-3): 29-33
doi: 10.1016/j.desal.2010.05.005
9 Yang W B, Lu Y P, Zheng F F, Xue X X, Li N, Liu D M. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chemical Engineering Journal , 2012, 179(1): 112-118
doi: 10.1016/j.cej.2011.10.068
10 Yang W B, Zheng F F, Lu Y P, Xue X X, Li N. Adsorption interaction of tetracyclines with porous synthetic resins. Industrial & Engineering Chemistry Research , 2011, 50(24): 13892-13898
doi: 10.1021/ie202166g
11 Zhou Q, Li Z Q, Shuang C D, Li A M, Zhang M C, Wang M Q. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chemical Engineering Journal , 2012, 210(11): 350-356
doi: 10.1016/j.cej.2012.08.081 pmid:22539917
12 Wang J N, Li A M, Zhou Y D, Zhang Q X. Adsorption of humic acid on weakly basic resin with macropores. Chemical Journal of Chinese Universties , 2009, 30(1): 181-184 (in China)
13 Wang J N, Li A M, Xu L, Zhou Y. Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal. Journal of Hazardous Materials , 2009, 169(1-3): 794-800
doi: 10.1016/j.jhazmat.2009.04.013
14 Shuang C D, Li P H, Li A M, Zhou Q, Zhang M, Zhou Y. Quaternized magnetic microspheres for the efficient removal of reactive dyes. Water Research , 2012, 46(14): 4417-4426
doi: 10.1016/j.watres.2012.05.052 pmid:22726352
15 Zhou Q, Zhang M C, Shuang C D, Li A M, Li A M. Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment. Chinese Chemical Letters , 2012, 23(6): 745-748
doi: 10.1016/j.cclet.2012.01.039
16 Dwivedi C P, Sahu J N, Mohanty C R, Mohan B R, Meikap B C. Column performance of granular activated carbon packed bed for Pb(II) removal. Journal of Hazardous Materials , 2008, 156(1-3): 596-603
doi: 10.1016/j.jhazmat.2007.12.097 pmid:18249492
17 Xu L C, Dai J D, Pan J M, Li X, Huo P, Yan Y, Zou X, Zhang R. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chemical Engineering Journal , 2011, 174(1): 221-230
doi: 10.1016/j.cej.2011.09.003
18 Ji L L, Liu F L, Xu Z Y, Zheng S R, Zhu D Q. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environmental Science & Technology , 2010, 44(8): 3116-3122
doi: 10.1021/es903716s pmid:20201519
19 Wang J N, Zhou Y, Li A M, Xu L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials , 2010, 176(1-3): 1018-1026
doi: 10.1016/j.jhazmat.2009.11.142 pmid:20074851
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[6] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[7] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[8] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[9] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[10] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[11] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[12] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[13] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[14] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed