Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (4) : 531-538    https://doi.org/10.1007/s11783-014-0629-1
RESEARCH ARTICLE
Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin
Jing REN1,Nan LI1,*(),Lin ZHAO1,Nanqi REN2,*()
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52 mg·g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg·L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate>nitrate>chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE.

Keywords phosphate removal      adsorption      nanosized ferric oxyhydroxide      anion exchanger     
Corresponding Author(s): Nan LI   
Issue Date: 11 June 2014
 Cite this article:   
Jing REN,Nan LI,Lin ZHAO, et al. Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin[J]. Front.Environ.Sci.Eng., 2014, 8(4): 531-538.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0629-1
https://academic.hep.com.cn/fese/EN/Y2014/V8/I4/531
Fig.1  TEM micrograph of anion resin and FOAE: (a) anion resin adsorbent; (b) FOAE adsorbent
Fig.2  XRD graph of FOAE and anion resin: (a) anion resin adsorbent; (b) FOAE adsorbent
Fig.3  Adsorption kinetics results of phosphate adsorption on FOAE and anion resin: (a) the adsorption kinetics results represented in Qt; (b) the adsorption kinetics results calculated by pseudo first order; (c) the adsorption kinetics results calculated by pseudo second order
adsorbentsmodelrate constantQe/(mg·g-1)R2
experimentalmodeling
FOAEpseudo first order8.5 × 10-351.5259.8587.720.98770.9727
pseudo second order1.2 × 10-4
anion resinpseudo first orderpseudo second order9.9 × 10-338.7048.9962.110.9797 0.9541
1.8 × 10-4
Tab.1  Adsorption kinetic parameters of phosphate onto FOAE and anion exchanger
Fig.4  Effect of pH on adsorption (FOAE= 0.025 g, t = 303K, C0 = 20 mg·L-1)
Fig.5  Effect of competing anions on adsorption of phosphate on FOAE
Fig.6  Application of the (a) Langmuir adsorption isotherm and (b) Freundlich adsorption isotherm to the experimental data obtained at different temperatures
Langmuir isotherm constantFreundlich isotherm constant
Q0/(mg·g-1)KL/(L·mg-1)R21/nKF/(mg·g-1)·(mg·L-1)-1R2
303K69.440.8370.89720.234933.4720.9852
308K72.990.9320.92470.235735.5060.9955
313K74.071.4210.90910.212839.7340.9890
Tab.2  Adsorption isotherm constants of Langmuir and Freundlich models
1 YagiS, FukushiK. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite. Journal of Colloid and Interface Science, 2012, 384(1): 128–136
doi: 10.1016/j.jcis.2012.06.063 pmid: 22832093
2 PastorL, ManginD, BaratR, SecoA. A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresource Technology, 2008, 99(14): 6285–6291
doi: 10.1016/j.biortech.2007.12.003 pmid: 18194863
3 WuY H, LiT L, YangL Z. Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresource Technology, 2012, 107: 10–18
doi: 10.1016/j.biortech.2011.12.088 pmid: 22257855
4 OnyangoM S, KucharD, KubotaM, MatsudaH. Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite. Industrial & Engineering Chemistry Research, 2007, 46(3): 894–900
doi: 10.1021/ie060742m
5 ZhangT, DingL, RenH. Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 2009, 166(2–3): 911–915
doi: 10.1016/j.jhazmat.2008.11.101 pmid: 19135791
6 MaJ, PengY Z, WangS Y, WangL, LiuY, MaN P. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy. Journal of Environmental Sciences-China, 2009, 21(9): 1169–1174
doi: 10.1016/S1001-0742(08)62398-0 pmid: 19999961
7 ChenC Y, ZhangP Y, ZengG M, DengJ H, ZhouY, LuH F. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chemical Engineering Journal, 2010, 158(3): 616–622
doi: 10.1016/j.cej.2010.02.021
8 LiH J, ChenY G. Research on polyhydroxyalkanoates and glycogen transformations: key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems. Frontiers of Environmental Science & Engineering in China, 2011, 5(2): 283–290
doi: 10.1007/s11783-010-0243-9
9 ChoiJ W, LeeS Y, ChungS G, HongS W, KimD J, LeeS H. Removal of phosphate from aqueous solution by functionalized mesoporous materials. Water, Air, and Soil Pollution, 2011, 222(1–4): 243–254
doi: 10.1007/s11270-011-0820-y
10 XuX, GaoB Y, YueQ Y, ZhongQ Q. Preparation of agricultural by-product based anion exchanger and its utilization for nitrate and phosphate removal. Bioresource Technology, 2010, 101(22): 8558–8564
doi: 10.1016/j.biortech.2010.06.060 pmid: 20599377
11 LiY, LiuC, LuanZ, PengX, ZhuC, ChenZ, ZhangZ, FanJ, JiaZ. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials, 2006, 137(1): 374–383
doi: 10.1016/j.jhazmat.2006.02.011 pmid: 16621271
12 SongX Y, PanY Q, WuQ Y, ChengZ H, MaW. Phosphate removal from aqueous solutions by adsorption using ferric sludge. Desalination, 2011, 280(1–3): 384–390
doi: 10.1016/j.desal.2011.07.028
13 NingP, BartH J, LiB, LuX, ZhangY. Phosphate removal from wastewater by model-La(III) zeolite adsorbents. Journal of Environmental Sciences-China, 2008, 20(6): 670–674
doi: 10.1016/S1001-0742(08)62111-7 pmid: 18763560
14 BorggaardO K, Raben-LangeB, GimsingA L, StrobelB W. Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 2005, 127(3–4): 270–279
doi: 10.1016/j.geoderma.2004.12.011
15 KöseT E, KivancB. Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 2011, 178(15): 34–39
doi: 10.1016/j.cej.2011.09.129
16 WuR S S, LamK H, LeeJ M N, LauT C. Removal of phosphate from water by a highly selective La(III)-chelex resin. Chemosphere, 2007, 69(2): 289–294
doi: 10.1016/j.chemosphere.2007.04.022 pmid: 17531289
17 DingL, WuC, DengH P, ZhangX X. Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin. Journal of Colloid and Interface Science, 2012, 376(1): 224–232
doi: 10.1016/j.jcis.2012.03.002 pmid: 22450053
18 BoyerT H, SingerP C. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Research, 2005, 39(7): 1265–1276
doi: 10.1016/j.watres.2005.01.002 pmid: 15862326
19 XuC H, ChengD D, GaoB Y, YinZ L, YueQ Y, ZhaoX. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions. Frontiers of Environmental Science & Engineering, 2012, 6(4): 455–462
20 DixitS, HeringJ G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 2003, 37(18): 4182–4189
doi: 10.1021/es030309t pmid: 14524451
21 ZengL, LiX M, LiuJ D. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 2004, 38(5): 1318–1326
doi: 10.1016/j.watres.2003.12.009 pmid: 14975665
22 WarnerC L, ChouyyokW, MackieK E, NeinerD, SarafL V, DroubayT C, WarnerM G, AddlemanR S. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir, 2012, 28(8): 3931–3937
doi: 10.1021/la2042235 pmid: 22329500
23 MartinB D, ParsonsS A, JeffersonB. Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles. Water Science and Technology, 2009, 60(10): 2637–2645
doi: 10.2166/wst.2009.686 pmid: 19923770
24 CumbalL, SenguptaA K. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environmental Science & Technology, 2005, 39(17): 6508–6515
doi: 10.1021/es050175e pmid: 16190206
25 GuptaM D, LoganathanP, VigneswaranS. Adsorptive removal of nitrate and phosphate from water by a purolite ion exchange resin and hydrous ferric oxide columns in series. Separation Science and Technology, 2012, 47(12): 1785–1792
doi: 10.1080/01496395.2012.658487
26 RenJ, LiN, ZhaoL. Adsorptive removal of Cr(VI) from water by anion exchanger based nanosized ferric oxyhydroxide hybrid adsorbent. Chemical and Biochemical Engineering Quarterly, 2012, 26(2): 111–118
27 HoY S, McKayG. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 1998, 76(4): 332–340
doi: 10.1205/095758298529696
28 LiH W, YeZ P, LinY, WangF Y. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin. Water Science and Technology, 2012, 65(12): 2091–2097
doi: 10.2166/wst.2012.121 pmid: 22643401
29 AwualM R, JyoA. Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 2011, 281(17): 111–117
doi: 10.1016/j.desal.2011.07.047
30 RengarajS, YeonJ W, KimY, JungY, HaY K, KimW H. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. Journal of Hazardous Materials, 2007, 143(1–2): 469–477
doi: 10.1016/j.jhazmat.2006.09.064 pmid: 17097805
31 PanB J, WuJ, PanB C, LvL, ZhangW M, XiaoL L, WangX S, TaoX C, ZhengS R. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Research, 2009, 43(17): 4421–4429
doi: 10.1016/j.watres.2009.06.055 pmid: 19615711
32 ZengH, FisherB, GiammarD E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environmental Science & Technology, 2008, 42(1): 147–152
doi: 10.1021/es071553d pmid: 18350889
33 LefèvreG. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Advances in Colloid and Interface Science, 2004, 107(2–3): 109–123
doi: 10.1016/j.cis.2003.11.002 pmid: 15026288
34 WijnjaH, SchulthessC P. Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. Journal of Colloid and Interface Science, 2000, 229(1): 286–297
doi: 10.1006/jcis.2000.6960 pmid: 10942570
35 NgC, LossoJ N, MarshallW E, RaoR M. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresource Technology, 2002, 85(2): 131–135
doi: 10.1016/S0960-8524(02)00093-7 pmid: 12227536
[1] Supplementary Material Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed