Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 5    https://doi.org/10.1007/s11783-017-1003-x
RESEARCH ARTICLE
Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction
Shanshan Ding1, Wen Huang1, Shaogui Yang2(), Danjun Mao1, Julong Yuan1, Yuxuan Dai1, Jijie Kong1, Cheng Sun1, Huan He2(), Shiyin Li2, Limin Zhang2
1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
2. School of Environment, Nanjing Normal University, Nanjing 210023, China
 Download: PDF(551 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorption behavior of DB BN on microwave catalyst MgFe2O4-SiC was investigated and the effects of concentration, temperature and pH on the adsorption process were discussed in this study.

The microwave-induced catalytic degradation rate of DB BN decreased even more than ten percent after the adsorption equilibrium were attained.

The degradation intermediate products of DB BN were identified and analyzed by GC-MS and LC-MS.

The proposed degradation pathways of direct black BN (DB BN) were described by combining with the microwave-induced catalytic reaction mechanism of MgFe2O4-SiC.

The novel microwave catalyst MgFe2O4-SiC was synthesized via sol-gel method, to remove azo dye Direct Black BN (DB BN) through adsorption and microwave-induced catalytic reaction. Microwave-induced catalytic degradation of DB BN, including adsorption behavior and its influencing factors of DB BN on MgFe2O4-SiC were investigated. According to the obtained results, it indicated that the pseudo-second-order kinetics model was suitable for the adsorption of DB BN onto MgFe2O4-SiC. Besides, the consequence of adsorption isotherm depicted that the adsorption of DB BN was in accordance with the Langmuir isotherm, which verified that the singer layer adsorption of MgFe2O4-SiC was dominant than the multi-layer one. The excellent adsorption capacities of MgFe2O4-SiC were kept in the range of initial pH from 3 to 7. In addition, it could be concluded that the degradation rate of DB BN decreased over ten percent after the adsorption equilibrium had been attained, and the results from the result of comparative experiments manifested that the adsorption process was not conducive to the process of microwave-induced catalytic degradation. The degradation intermediates and products of DB BN were identified and determined by GC-MS and LC-MS. Furthermore, combined with the catalytic mechanism of MgFe2O4-SiC, the proposed degradation pathways of DB BN were the involution of microwave-induced ·OH and holes in this catalytic system the breakage of azo bond, hydroxyl substitution, hydroxyl addition, nitration reaction, deamination reaction, desorbate reaction, dehydroxy group and ring-opening reaction.

Keywords Adsorption      Microwave-induced catalytic degradation      Direct black BN      Degradation pathway     
Corresponding Author(s): Shaogui Yang,Huan He   
Issue Date: 31 October 2017
 Cite this article:   
Shanshan Ding,Wen Huang,Shaogui Yang, et al. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-1003-x
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/5
Fig.1  (a) The adsorption kinetics of MgFe2O4-SiC and commercial-AC with different initial concentrations of DB BN (adsorbent dosage= 1.5 g/L, T= 298K) and (b) the adsorption kinetics of microwave catalyst MgFe2O4-SiC under different temperatures of the system
Adsorption conditionPseudo-first-order equationPseudo-second-order equation
k1(min1)qe(mg/g)R2k2(g/mg/min)qe (mg/g)R2
Initial concentration (mg/L)
100.149484.036630.90350.0022950124.261570.8822
200.1003812.29620.96430.03796913.50940.9870
400.0882214.080290.91200.05162715.419890.9628
600.0654918.1730.98020.07793920.18890.9644
800.0506725.675260.96620.1668636129.074150.9941
Temperature (K)
2880.108737.15670.967782.389857.812180.9841
2980.064727.060670.896146.238717.839240.9523
3080.096528.678230.9539129.868619.519660.9837
Tab.1  Parameters of adsorption kinetic models of DB BN onto MgFe2O4-SiC samples
Fig.2  (a) The adsorption kinetics of microwave catalyst MgFe2O4-SiC under different initial pH of DB BN; (b) Effect of pH on the adsorption capacity of microwave catalyst MgFe2O4-SiC for the removal of DB BN
Fig.3  Adsorption isotherms of DB BN onto microwave catalyst MgFe2O4-SiC fitting with (a) Langmuir model; (b) Freundlich model
Fig.4  Microwave-induced catalytic degradation of DB BN with different concentrations
Fig.5  The degradation of different kinds of azo dyes with MgFe2O4-SiC under the same microwave-induced catalytic degradation system
Fig.6  The pure microwave-induced catalytic degradation of MgFe2O4-SiC and commercial-AC of DB BN (a) without adsorption and (b) after the finished adsorption equilibrium
CompoundsRetention time (min)Chemical structureMolecular formulam/z
17.41C8H18O130.23
29.36C7H13O2N143.21
310.47C6H16N2116.23
413.22C11H24156.36
515.66C16H19211.41
611.11C12H9N169.15
711.84C12H11NO3217.10
812.27C10H9NO6S271.11
912.85C16H14N3O262.23
1013.05C8H8N2O4196.18
1114.31C8H8N2O8S292.26
1215.43C18H14N4O2318.30
1315.48C18H14N2O274.27
1416.04C6H4N2O4168.07
1516.70C10H6N2O7S297.21
1617.88C7H6N2O2150.02
1719.13C16H13N3O2279.15
Tab.2  Degraded compounds identified by GC-MS and LC-MS
Fig.24  Possible degradation pathways of DB BN in microwave-induced catalytic system
1 Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
https://doi.org/10.1039/C4CS00126E pmid: 24841176
2 Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Applied Catalysis B: Environmental, 2014, 160: 307–324
https://doi.org/10.1016/j.apcatb.2014.05.035
3 Rache M L, Garcia A R, Zea H R, Silva A M T, Madeira L M, Ramirez J H. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi’s equation. Applied Catalysis B: Environmental, 2014, 146: 192–200
https://doi.org/10.1016/j.apcatb.2013.04.028
4 Chang J S, Chou C, Lin Y C, Lin P J, Ho J Y, Hu T L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 2001, 35(12): 2841–2850
https://doi.org/10.1016/S0043-1354(00)00581-9 pmid: 11471684
5 Saratale R G, Saratale G D, Kalyani D C, Chang J S, Govindwar S P. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology, 2009, 100(9): 2493–2500
https://doi.org/10.1016/j.biortech.2008.12.013 pmid: 19157864
6 Han F, Kambala V S R, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis a-General, 2009, 359(1–2): 25–40
7 Engel E, Ulrich H, Vasold R, König B, Landthaler M, Süttinger R, Bäumler W. Azo pigments and a basal cell carcinoma at the thumb. Dermatology (Basel, Switzerland), 2008, 216(1): 76–80
https://doi.org/10.1159/000109363 pmid: 18032904
8 Ahmed M A, Brick A A, Mohamed A A. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 2017, 174: 280–288
https://doi.org/10.1016/j.chemosphere.2017.01.147 pmid: 28183053
9 He Q, Ni Y, Ye S. Preparation of flowerlike BiOBr/Bi2MoO6 composite superstructures and the adsorption behavior to dyes. Journal of Physics and Chemistry of Solids, 2017, 104: 286–292
https://doi.org/10.1016/j.jpcs.2017.01.020
10 Kusvuran E, Gulnaz O, Irmak S, Atanur O M, Yavuz H I, Erbatur O. Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. Journal of Hazardous Materials, 2004, 109(1-3): 85–93
https://doi.org/10.1016/j.jhazmat.2004.03.009 pmid: 15177749
11 Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B: Environmental, 2004, 47(4): 219–256
https://doi.org/10.1016/j.apcatb.2003.09.010
12 Thostenson E T, Chou T W. Microwave processing: Fundamentals and applications.  Composites Part A—Applied Science and Manufacturing, 1999, 30(9): 1055–1071
13 Mao D, Yu A, Ding S, Wang F, Yang S, Sun C, He H, Liu Y, Yu K. One-pot synthesis of BiOCl half-shells using microemulsion droplets as templates with highly photocatalytic performance for the degradation of ciprofloxacin. Applied Surface Science, 2016, 389: 742–750
https://doi.org/10.1016/j.apsusc.2016.07.178
14 Mao D, Ding S, Meng L, Dai Y, Sun C, Yang S, He H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Applied Catalysis B: Environmental, 2017, 207: 153–165
https://doi.org/10.1016/j.apcatb.2017.02.010
15 Ding S, Mao D, Yang S, Wang F, Meng L, Han M, He H, Sun C, Xu B. Grapnene-analogue h-BN coupled Bi-rich Bi4O5Br2 layered microspheres for enhanced visible-light photocatalytic activity and mechanism insight. Applied Catalysis B: Environmental, 2017, 210: 386–399
https://doi.org/10.1016/j.apcatb.2017.04.002
16 He H, Yang S, Yu K, Ju Y, Sun C, Wang L. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. Journal of Hazardous Materials, 2010, 173(1–3): 393–400
https://doi.org/10.1016/j.jhazmat.2009.08.084 pmid: 19748731
17 Zhang L, Liu X, Guo X, Su M, Xu T, Song X. Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chemical Engineering Journal, 2011, 173(3): 737–742
https://doi.org/10.1016/j.cej.2011.08.041
18 Lai T L, Liu J Y, Yong K F, Shu Y Y, Wang C B. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. Applied Catalysis B: Environmental, 2008, 157(2-3): 496–502
https://doi.org/10.1016/j.jhazmat.2008.01.009 pmid: 18313217
19 Lai T L, Liu J Y, Yong K F, Shu Y Y, Wang C B. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. Journal of Hazardous Materials, 2008, 157(2-3): 496–502
https://doi.org/10.1016/j.jhazmat.2008.01.009 pmid: 18313217
20 Lai T L, Lee C C, Wu K S, Shu Y Y, Wang C B. Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental, 2006, 68(3–4): 147–153
https://doi.org/10.1016/j.apcatb.2006.07.023
21 Remya N, Lin J G. Current status of microwave application in wastewater treatment—A review. Chemical Engineering Journal, 2011, 166(3): 797–813
https://doi.org/10.1016/j.cej.2010.11.100
22 de la Hoz A, Díaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 2005, 34(2): 164–178
https://doi.org/10.1039/B411438H pmid: 15672180
23 Chen J, Xue S, Song Y, Shen M, Zhang Z, Yuan T, Tian F, Dionysiou D D. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution. Journal of Hazardous Materials, 2016, 310: 226–234
https://doi.org/10.1016/j.jhazmat.2016.02.049 pmid: 26937869
24 Xiao J, Fang X, Yang S, He H, Sun C. Microwave-assisted heterogeneous catalytic oxidation of high-concentration Reactive yellow 3 with CuFe2O4/PAC. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(10): 1861–1868
https://doi.org/10.1002/jctb.4497
25 Shi W, Li Q, An S, Zhang T, Zhang L. Magnetic nanosized calcium ferrite particles for efficient degradation of crystal violet using a microwave-induced catalytic method: Insight into the degradation pathway. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(2): 367–374
https://doi.org/10.1002/jctb.4578
26 Zhang L, Zhou X, Guo X, Song X, Liu X. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation. Journal of Molecular Catalysis a-Chemical, 2011, 335(1–2): 31–37
27 Dong L, Qiao J, Yan L, Zheng G, Xiao F. Study on microwave combined with active carbon for treatment of azo-dye wastewater. Environmental Pollution & Control, 2010, 32(4): 34–39
28 Fang X, Xiao J, Yang S, He H, Sun C. Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of Reactive Brilliant Red X-3B. Applied Catalysis B: Environmental, 2015, 162: 544–550
https://doi.org/10.1016/j.apcatb.2014.07.022
29 Gao J, Yang S, Li N, Meng L, Wang F, He H, Sun C. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation. Applied Surface Science, 2016, 379: 140–149
https://doi.org/10.1016/j.apsusc.2016.04.041
30 Sun T, Zhao Z, Liang Z, Liu J, Shi W, Cui F. Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. Journal of Colloid and Interface Science, 2017, 495: 168–177
https://doi.org/10.1016/j.jcis.2017.01.104 pmid: 28199855
31 Bulut E, Oezacar M, Sengil I A. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous and Mesoporous Materials, 2008, 115(3): 234–246
https://doi.org/10.1016/j.micromeso.2008.01.039
32 Zhang Z, Shan Y, Wang J, Ling H, Zang S, Gao W, Zhao Z, Zhang H. Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials, 2007, 147(1-2): 325–333
https://doi.org/10.1016/j.jhazmat.2006.12.083 pmid: 17293037
33 Wang C, Yediler A, Lienert D, Wang Z, Kettrup A. Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere, 2003, 52(7): 1225–1232
https://doi.org/10.1016/S0045-6535(03)00331-X pmid: 12821003
34 Quan X, Zhang Y, Chen S, Zhao Y, Yang F. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. Journal of Molecular Catalysis A—Chemical, 2007, 263(1–2): 216–222
35 Zhang Z, Deng Y, Shen M, Han W, Chen Z, Xu D, Ji X. Investigation on rapid degradation of sodium dodecyl benzene sulfonate (SDBS) under microwave irradiation in the presence of modified activated carbon powder with ferreous sulfate. Desalination, 2009, 249(3): 1022–1029
https://doi.org/10.1016/j.desal.2009.09.010
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[5] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[8] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[9] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[10] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[11] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[12] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[13] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed