Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (2) : 34    https://doi.org/10.1007/s11783-019-1213-5
RESEARCH ARTICLE
Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater
Keke Li1, Huosheng Li2(), Tangfu Xiao1, Gaosheng Zhang1, Aiping Liang1, Ping Zhang3, Lianhua Lin1, Zexin Chen1, Xinyu Cao1, Jianyou Long1()
1. School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
2. Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta (Ministry of Education), Guangzhou University, Guangzhou 510006, China
3. School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
 Download: PDF(2316 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction.

• Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12.

• Mn0 can activate persulfate to form hydroxyl and sulfate radicals.

• Oxidation-induced precipitation and surface complexation contribute to Tl removal.

• Combined Mn0-oxidants process is promising in the environmental field.

Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82 or Mn0-ClO system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82 oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82 system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.

Keywords Nano zero-valent manganese      Thallium      Adsorption      Oxidation      Sulfate radical      Hydroxyl radical     
Corresponding Author(s): Huosheng Li,Jianyou Long   
Issue Date: 11 February 2020
 Cite this article:   
Keke Li,Huosheng Li,Tangfu Xiao, et al. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1213-5
https://academic.hep.com.cn/fese/EN/Y2020/V14/I2/34
Fig.1  Characterization of the as-prepared Mn0 nanoparticles: (a, b) TEM images, (c) selective area electron diffraction image, (d) high-resolution TEM image, (e) XRD patterns, and (f) particle size distribution.
Fig.2  Factors  influencing Tl(I) removal: (a) initial pH, (b) coagulation pH, (c) oxidant dosage without adsorbent; (d) oxidant dosage with 2 g/L Mn0 (Tl(I)0 = 10 mg/L, Mn0 dosage= 2 g/L, and reaction time= 30 min; for (a) and (b), if present, Na2S2O8 = 6 g/L, ClO- = 40 mmol/L, H2O2 = 40 mmol/L; for (c) and (d), initial pH= 10, coagulation pH= 10).
Fig.3  Influence of (a)  co-existing organics and (b) cations on Tl(I) removal: (Tl(I)0 = 10 mg/L, Mn0 dosage= 2 g/L, initial pH= 10, coagulation pH= 10, and reaction time= 30 min; if present, Na2S2O8 = 6 g/L, ClO- = 40 mmol/L, H2O2 = 40 mmol/L).
Fig.4  Isotherms of  Tl(I) removal using the Mn0-S2O82- system (initial pH= 10, coagulation pH= 10, Tl(I)0 = 10–500 mg/L, Mn0 dosage= 2 g/L, Na2S2O8 = 6 g/L, and reaction time= 30 min).
Fig.5  XPS spectra of  the Mn0 before and after adsorption of Tl: (a) survey, (b) Mn 2p, (c) O 1s, (d) Tl 4f.
Fig.6  ESR spectra of  the free oxygenous radicals captured by DMPO.
1 S O Adio, M Asif, A R I Mohammed, N Baig, A A Al-Arfaj, T A Saleh (2019). Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: Statistical analysis and regeneration. Process Safety and Environmental Protection, 121: 254–262
https://doi.org/10.1016/j.psep.2018.10.008
2 N Belzile, Y W Chen (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84: 218–243
https://doi.org/10.1016/j.apgeochem.2017.06.013
3 C Bernofsky, B M Bandara, O Hinojosa (1990). Electron spin resonance studies of the reaction of hypochlorite with 5,5-dimethyl-1-pyrroline-N-oxide. Free Radical Biology & Medicine, 8(3): 231–239
https://doi.org/10.1016/0891-5849(90)90068-T pmid: 2160410
4 B Campanella, A D’Ulivo, L Ghezzi, M Onor, R Petrini, E Bramanti (2018). Influence of environmental and anthropogenic parameters on thallium oxidation state in natural waters. Chemosphere, 196: 1–8
https://doi.org/10.1016/j.chemosphere.2017.12.155 pmid: 29289846
5 I G Casella, R Spera (2005). Electrochemical deposition of nickel and nickel–thallium composite oxides films from EDTA alkaline solutions. Journal of Electroanalytical Chemistry, 578(1): 55–62doi.org/10.1016/j.jelechem.2004.11.043
6 V Cheam (2001). Thallium contamination of water in Canada. Water Quality Research Journal, 36(4): 851–877
https://doi.org/10.2166/wqrj.2001.046
7 M Chen, P Wu, L Yu, S Liu, B Ruan, H Hu, N Zhu, Z Lin (2017). FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident. Journal of Environmental Management, 192: 31–38
https://doi.org/10.1016/j.jenvman.2017.01.038 pmid: 28131980
8 Y D Chen, S H Ho, D Wang, Z S Wei, J S Chang, N Q Ren (2018). Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresource Technology, 247: 463–470
https://doi.org/10.1016/j.biortech.2017.09.125 pmid: 28965077
9 Y W Cheong, J S Min, K S Kwon (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64(1–3): 147–152
https://doi.org/10.1016/S0375-6742(98)00028-4
10 T Chi, J Zuo, F L Liu (2017). Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Frontiers of Environmental Science & Engineering, 11(2): 15
https://doi.org/10.1007/s11783-017-0921-y
11 H A Chu, H Sackett, G T Babcock (2000). Identification of a Mn-O-Mn cluster vibrational mode of the oxygen-evolving complex in photosystem II by low-frequency FTIR spectroscopy. Biochemistry, 39(47): 14371–14376
https://doi.org/10.1021/bi001751g pmid: 11087389
12 P Coetzee, J Fischer, M Hu (2004). Simultaneous separation and determination of Tl (I) and Tl (III) by IC–ICP-OES and IC–ICP-MS. Water S.A., 29(1): 17–22
https://doi.org/10.4314/wsa.v29i1.4940
13 A Dada, F Adekola, E Odebunmi (2014). Investigation of the synthesis and characterization of manganese nanoparticles and its ash rice husk supported nanocomposite. In: Proceedings of 1st African International Conference/Workshop on Applications of Nanotechnology to Energy, Health and Environment 2014, Nsukka, Nigeria. Nsukka: UNN, 138–149
14 S Dadfarnia, T Assadollahi, A M Haji Shabani (2007). Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent. Journal of Hazardous Materials, 148(1–2): 446–452
https://doi.org/10.1016/j.jhazmat.2007.02.059 pmid: 17418486
15 H Dashti Khavidaki, H Aghaie (2013). Adsorption of Thallium (I) ions using eucalyptus leaves powder. CLEAN–Soil, Air, Water, 41(7): 673–679
16 T A DelValls, V Sáenz, A M Arias (1999). Thallium in the marine environment: first ecotoxicological assessments in the Guadalquivir estuary and its potential adverse effect on the Do�ana European Natural Reserve after the Aznalcñllar mining spill (SW spain). Ciencias Marinas, 25(2): 161–175
https://doi.org/10.7773/cm.v25i2.670
17 Z H Diao, X R Xu, H Chen, D Jiang, Y X Yang, L J Kong, Y X Sun, Y X Hu, Q W Hao, L Liu (2016). Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism. Journal of Hazardous Materials, 316: 186–193
https://doi.org/10.1016/j.jhazmat.2016.05.041 pmid: 27235826
18 A Georgi, F D Kopinke (2005). Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 58(1–2): 9–18
https://doi.org/10.1016/j.apcatb.2004.11.014
19 E Grygo-Szymanko, A Tobiasz, S Walas (2016). Speciation analysis and fractionation of manganese: A review. TrAC Trends in Analytical Chemistry, 80: 112–124
https://doi.org/10.1016/j.trac.2015.09.010
20 J Huang, H Zhang (2019). Oxidant or catalyst for oxidation? The role of manganese oxides in the activation of peroxymonosulfate (PMS). Frontiers of Environmental Science & Engineering, 13(5): 65
https://doi.org/doi.org/10.1007/s11783-019-1158-8
21 X Huangfu, J Jiang, X Lu, Y Wang, Y Liu, S Y Pang, H Cheng, X Zhang, J Ma (2015). Adsorption and oxidation of thallium(I) by a nanosized manganese dioxide. Water, Air, & Soil Pollution, 226(1): 2272
https://doi.org/10.1007/s11270-014-2272-7
22 X Huangfu, C Ma, J Ma, Q He, C Yang, J Zhou, J Jiang, Y Wang (2017). Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration. Chemosphere, 189: 1–9
https://doi.org/10.1016/j.chemosphere.2017.09.039 pmid: 28918289
23 S Kalaivani, A Muthukrishnaraj, S Sivanesan, L Ravikumar (2016). Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process Safety and Environmental Protection, 104: 11–23
https://doi.org/10.1016/j.psep.2016.08.010
24 D I Kaplan, S V Mattigod (1998). Aqueous geochemistry of thallium. In: Nriagu J O, ed. Thallium in the Environment. New York, NY, ETATS-UNIS: John Wiley & Sons, 15–30
25 C H Lan, T S Lin (2005). Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicology and Environmental Safety, 61(3): 432–435
https://doi.org/10.1016/j.ecoenv.2004.12.021 pmid: 15922810
26 D Li, Z Jin, Q Zhou, J Chen, Y Lei, S Sun (2010). Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR. Journal of Molecular Structure, 974(1–3): 68–72
https://doi.org/10.1016/j.molstruc.2010.01.031
27 H Li, Y Chen, J Long, D Jiang, J Liu, S Li, J Qi, P Zhang, J Wang, J Gong, Q Wu, D Chen (2017a). Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. Journal of Hazardous Materials, 333: 179–185
https://doi.org/10.1016/j.jhazmat.2017.03.020 pmid: 28355586
28 H Li, Y Chen, J Long, X Li, D Jiang, P Zhang, J Qi, X Huang, J Liu, R Xu, J Gong (2017b). Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338: 296–305
https://doi.org/10.1016/j.jhazmat.2017.05.033 pmid: 28578231
29 H Li, X Li, J Long, K Li, Y Chen, J Jiang, X Chen, P Zhang (2019a). Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique. Journal of Cleaner Production, 221: 89–97
https://doi.org/10.1016/j.jclepro.2019.02.205
30 H Li, J Xiong, T Xiao, J Long, Q Wang, K Li, X Liu, G Zhang, H Zhang (2019b). Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Process Safety and Environmental Protection, 127: 257–266
https://doi.org/10.1016/j.psep.2019.04.031
31 H Li, J Xiong, G Zhang, A Liang, J Long, T Xiao, Y Chen, P Zhang, D Liao, L Lin, H Zhang (2020a). Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Science of the Total Environment, 698: 134166
https://doi.org/10.1016/j.scitotenv.2019.134166 pmid: 31494421
32 H S Li, X W Li, Y H Chen, J Y Long, G S Zhang, T F Xiao, P Zhang, C L Li, L Z Zhuang, W Y Huang (2018a). Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. Journal of Cleaner Production, 199: 705–715
https://doi.org/10.1016/j.jclepro.2018.07.178
33 H S Li, X W Li, T F Xiao, Y H Chen, J Y Long, G S Zhang, P Zhang, C L Li, L Z Zhuang, K K Li (2018b). Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chemical Engineering Journal, 353: 867–877
https://doi.org/10.1016/j.cej.2018.07.169
34 H S Li, J Y Long, X W Li, K K Li, L L Xu, J P Lai, Y H Chen, P Zhang (2018c). Aqueous biphasic separation of thallium from aqueous solution using alcohols and salts. Desalination and Water Treatment, 123: 330–337
https://doi.org/10.5004/dwt.2018.22853
35 H S Li, H G Zhang, J Y Long, P Zhang, Y H Chen (2019c). Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal. Frontiers of Environmental Science & Engineering, 13(4): 49
https://doi.org/10.1007/s11783-019-1130-7
36 K Li, H Li, T Xiao, J Long, G Zhang, Y Li, X Liu, Z Liang, F Zheng, P Zhang (2019d). Synthesis of manganese dioxide with different morphologies for thallium removal from wastewater. Journal of Environmental Management, 251: 109563
https://doi.org/10.1016/j.jenvman.2019.109563 pmid: 31542625
37 K Li, H Li, T Xiao, G Zhang, J Long, D Luo, H Zhang, J Xiong, Q Wang (2018d). Removal of thallium from wastewater by a combination of persulfate oxidation and iron coagulation. Process Safety and Environmental Protection, 119: 340–349
https://doi.org/10.1016/j.psep.2018.08.018
38 S Li, L Qi, L Lu, H Wang (2012). Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Advances, 2(8): 3298–3308
https://doi.org/10.1039/c2ra00991a
39 S Li, W Wang, F Liang, W X Zhang (2017c). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322(Pt A): 163–171
https://doi.org/10.1016/j.jhazmat.2016.01.032 pmid: 26861641
40 Y Li,H Li , F Liu , G Zhang , Y Xu , T Xiao , J Long , Z Chen , D Liao , J Zhang , L Lin , P Zhang . (2020b)Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: materials characterization, process optimization and removal mechanisms. Journal of Hazardous Materials, 386: 121900
https://doi.org/doi.org/10.1016/j.jhazmat.2019.121900
41 J Liu, J Wang, Y Chen, H Lippold, T Xiao, H Li, C C Shen, L Xie, X Xie, H Yang (2017a). Geochemical transfer and preliminary health risk assessment of thallium in a riverine system in the Pearl River Basin, South China. Journal of Geochemical Exploration, 176: 64–75
https://doi.org/10.1016/j.gexplo.2016.01.011
42 Y Liu, L Wang, X Wang, Z Huang, C Xu, T Yang, X Zhao, J Qi, J Ma (2017b). Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle. Water Research, 124: 149–157
https://doi.org/10.1016/j.watres.2017.07.051 pmid: 28755544
43 L A Martin, A Wissocq, M F Benedetti, C Latrille (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica et Cosmochimica Acta, 230: 1–16
https://doi.org/10.1016/j.gca.2018.03.016
44 S Q Memon, N Memon, A R Solangi, J U R Memon (2008). Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, 140(1–3): 235–240
https://doi.org/10.1016/j.cej.2007.09.044
45 A Nilchi, T Shariati S Dehaghan, Rasouli Garmarodi (2013). Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination, 321: 67–71
https://doi.org/10.1016/j.desal.2012.06.022
46 J O Nriagu (1998). Thallium in the Environment. New York, NY, ETATS-UNIS: John Wiley & Sons
47 Z Pan, Y Qiu, J Yang, F Ye, Y Xu, X Zhang, M Liu, Y Zhang (2016). Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy, 26: 610–619
https://doi.org/10.1016/j.nanoen.2016.05.053
48 A P Panda, P Rout, K K Jena, S M Alhassan, S A Kumar, U Jha, R Dey, S Swain (2019). Core–shell structured zero-valent manganese (ZVM): A novel nanoadsorbent for efficient removal of As (iii) and As (v) from drinking water. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(16): 9933–9947
https://doi.org/10.1039/C9TA00428A
49 K M Parida, S Mallick, B K Mohapatra, V N Misra (2004). Studies on manganese-nodule leached residues; 1. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system. Journal of Colloid and Interface Science, 277(1): 48–54
https://doi.org/10.1016/j.jcis.2004.04.057 pmid: 15276037
50 A L Peter, T Viraraghavan (2005). Thallium: a review of public health and environmental concerns. Environment International, 31(4): 493–501
https://doi.org/10.1016/j.envint.2004.09.003 pmid: 15788190
51 P Rao, M S Mak, T Liu, K C Lai, I M Lo (2009). Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere, 75(2): 156–162
https://doi.org/10.1016/j.chemosphere.2008.12.019 pmid: 19157491
52 A L M Reddy, S Ramaprabhu (2007). Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 32(16): 3998–4004
https://doi.org/10.1016/j.ijhydene.2007.04.048
53 J J Rodríguez-Mercado, G Mosqueda-Tapia, M A Altamirano-Lozano (2017). Genotoxicity assessment of human peripheral Lymphocytes induced by thallium(I) and thallium(III). Toxicological and Environmental Chemistry, 99(5–6): 987–998
https://doi.org/10.1080/02772248.2017.1307377
54 N S Shah, J Ali Khan, M Sayed, Z Ul Haq Khan, H Sajid Ali, B Murtaza, H M Khan, M Imran, N Muhammad (2019). Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82–. Chemical Engineering Journal, 356: 199–209
https://doi.org/10.1016/j.cej.2018.09.009
55 I C Smith, B L Carson (1977). Volume I. Thallium. In: Smith I C, Carson B L, editors, Trace Metals in the Environment. Michigan: 72 Ann Arbor Science Publishers Inc. Ann Arbor, 406
56 A R Sorge, M Turco, G Pilone, G Bagnasco (2004). Decomposition of hydrogen peroxide on MnO2/TiO2 catalysts. Journal of Propulsion and Power, 20(6): 1069–1075
https://doi.org/10.2514/1.2490
57 Ş Taşar, F Kaya, A Özer (2014). Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2(2): 1018–1026
https://doi.org/10.1016/j.jece.2014.03.015
58 S S Tripathy, J L Bersillon, K Gopal (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194(1–3): 11–21
https://doi.org/10.1016/j.desal.2005.10.023
59 R Tyagi, P Rana, A R Khan, D Bhatnagar, M M Devi, S Chaturvedi, R P Tripathi, S Khushu (2011). Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. Journal of Applied Toxicology, 31(7): 663–670
https://doi.org/10.1002/jat.1617 pmid: 21218500
60 A Vaněk, Z Grösslová, M Mihaljevič, V Ettler, J Trubač, V Chrastný, V Penížek, L Teper, J Cabala, A Voegelin, T Zádorová, V Oborná, O Drábek, O Holubík, J Houška, L Pavlů, C Ash (2018). Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior. Journal of Hazardous Materials, 343: 78–85
https://doi.org/10.1016/j.jhazmat.2017.09.020 pmid: 28941840
61 S V Verstraeten, S Lucangioli, M Galleano (2009). ESR characterization of thallium(III)-mediated nitrones oxidation. Inorganica Chimica Acta, 362(7): 2305–2310
https://doi.org/10.1016/j.ica.2008.10.013
62 S Wan, M Ma, L Lv, L Qian, S Xu, Y Xue, Z Ma (2014). Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chemical Engineering Journal, 239: 200–206
https://doi.org/10.1016/j.cej.2013.11.010
63 X Wang, W Lian, X Sun, J Ma, P Ning (2018a). Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution. Frontiers of Environmental Science & Engineering, 12(4): 9
https://doi.org/10.1007/s11783-018-1066-3
64 Z Wang, W Xiong, B M Tebo, D E Giammar (2014). Oxidative UO2 dissolution induced by soluble Mn(III). Environmental Science & Technology, 48(1): 289–298
https://doi.org/10.1021/es4037308 pmid: 24286164
65 Z Wang, B Zhang, Y Jiang, Y Li, C He (2018b). Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Applied Energy, 209: 33–42
https://doi.org/10.1016/j.apenergy.2017.10.075
66 G Wei, J Zhang, J Luo, H Xue, D Huang, Z Cheng, X Jiang (2019). Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene. Frontiers of Environmental Science & Engineering, 13(4): 61
https://doi.org/10.1007/s11783-019-1142-3
67 S Wick, B Baeyens, M Marques Fernandes, A Voegelin (2018). Thallium adsorption onto illite. Environmental Science & Technology, 52(2): 571–580
https://doi.org/10.1021/acs.est.7b04485 pmid: 29286655
68 T Xiao, F Yang, S Li, B Zheng, Z Ning (2012). Thallium pollution in China: A geo-environmental perspective. Science of the Total Environment, 421– 422: 51–58
https://doi.org/10.1016/j.scitotenv.2011.04.008 pmid: 21514625
69 R B Xu, M H Su, X X Huang, D Y Chen, J Y Long, Y H Liu, L J Kong, H S Li (2019). Efficient removal of thallium and EDTA from aqueous solution via the Fenton process. Desalination and Water Treatment, 154: 166–176
https://doi.org/10.5004/dwt.2019.23805
70 H Y Yu, C Chang, F Li, Q Wang, M Chen, J Zhang (2018). Thallium in flowering cabbage and lettuce: Potential health risks for local residents of the Pearl River Delta, South China. Environmental Pollution, 241: 626–635
https://doi.org/10.1016/j.envpol.2018.05.090 pmid: 29890511
71 H Zeng, S Tian, H Liu, B Chai, X Zhao (2016). Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine. Chemical Engineering Journal, 301: 371–379
https://doi.org/10.1016/j.cej.2016.04.006
72 G Zhang, F Fan, X Li, J Qi, Y Chen (2018). Superior adsorption of thallium(I) on titanium peroxide: Performance and mechanism. Chemical Engineering Journal, 331: 471–479
https://doi.org/10.1016/j.cej.2017.08.053
73 H Zhang, M Li, Z Yang, Y Sun, J Yan, D Chen, Y Chen (2017). Isolation of a non-traditional sulfate reducing-bacteria Citrobacter freundii sp. and bioremoval of thallium and sulfate. Ecological Engineering, 102: 397–403
https://doi.org/10.1016/j.ecoleng.2017.02.049
74 Y S Zhao, L Lin, M Hong (2019). Nitrobenzene contamination of groundwater in a petrochemical industry site. Frontiers of Environmental Science & Engineering, 13(2): 29
https://doi.org/10.1007/s11783-019-1107-6
75 S Zhi, L Tian, N Li, K Zhang (2018). A novel system of MnO2-mullite-cordierite composite particle with NaClO for Methylene blue decolorization. Journal of Environmental Management, 213: 392–399
https://doi.org/10.1016/j.jenvman.2018.02.082 pmid: 29505994
[1] FSE-19121-OF-LKK_suppl_1 Download
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[4] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[5] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[6] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[7] Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 53-.
[8] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[9] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[10] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[11] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[12] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[13] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[14] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[15] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed