Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 502-512    https://doi.org/10.1007/s11783-016-0838-x
RESEARCH ARTICLE
Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid
Xiang ZHANG1,Xiaogang GU1,Shuguang LU1,*(),Zhouwei MIAO1,2,Minhui XU1,Xiaori FU1,Muhammad DANISH1,Mark L. BRUSSEAU2,Zhaofu QIU1,Qian SUI1
1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
2. Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721, United States
 Download: PDF(1053 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO? and O2-? in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly to direct oxidation by HO?, while O2-? strengthened the generation of HO? by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl-, HCO3-, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl- production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.

Keywords calcium peroxide      trichloroethene (TCE)      citric acid      ferric ion      free radicals      oxidation     
Corresponding Author(s): Shuguang LU   
Online First Date: 31 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Xiang ZHANG,Xiaogang GU,Shuguang LU, et al. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 502-512.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0838-x
https://academic.hep.com.cn/fese/EN/Y2016/V10/I3/502
Fig.1  TCE degradation in CP/Fe(III) system at various CP/Fe(III)/TCE molar ratios ([TCE]0 = 0.15 mmol·L-1)
Fig.2  Effect of CA dosage on TCE degradation in CP/Fe(III)/CA system ([TCE]0 = 0.15 mmol?L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1)
Fig.3  Variations of H2O2 in CP/Fe(III) and CP/Fe(III)/CA systems ([TCE]0 = 0.15 mmol·L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1, [CA]0 = 0.30 mmol·L-1)
Fig.4  Degradation of probe compounds in CP/Fe(III)/CA system ([NB]0 = 0.30 mmol·L-1, [CT]0 = 0.01 mmol·L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1, [CA]0 = 0.30 mmol·L-1)
Fig.5  Effect of radical scavengers on TCE degradation in CP/Fe(III)/CA system ([TCE]0 = 0.15 mmol·L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1, [CA]0 = 0.30 mmol·L-1)
Fig.6  Effect of solution matrix on TCE degradation ([TCE]0 = 0.15 mmol·L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1, [CA]0 = 0.30 mmol·L-1)
Fig.7  Comparison of TCE degradation in ultrapure water and real groundwater ([TCE]0 = 0.15 mmol·L-1)
Fig.8  Cl- production in CP/Fe(III)/CA system along with TCE degradation ([TCE]0 = 0.15 mmol·L-1, [CP]0 = 0.60 mmol·L-1, [Fe(III)]0 = 1.20 mmol·L-1, [CA]0 = 0.30 mmol·L-1)
1 Yaron B, Dror I, Berkowitz B. Properties and Behavior of Selected Inorganic and Organometallic Contaminants. In: Soil-Subsurface Change. Berlin: Springer, 2012, 39–74
2 US Environmental Protection Agency. TSCA Work Plan Chemicals: Methods Document. 2012. Available online at (accessed August 21, 2015)
3 Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1–84
https://doi.org/10.1080/10643380500326564
4 Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886
https://doi.org/10.1063/1.555805
5 De Luca A, Dantas R F, Esplugas S. Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 2014, 61: 232–242
https://doi.org/10.1016/j.watres.2014.05.033 pmid: 24930010
6 Li Y C, Bachas L G, Bhattacharyya D. Kinetics studies of trichlorophenol destruction by chelate-based Fenton reaction. Environmental Engineering Science, 2005, 22(6): 756–771
https://doi.org/10.1089/ees.2005.22.756
7 Sun S P, Zeng X, Lemley A T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes. Journal of Hazardous Materials, 2013, 252-253: 155–165
https://doi.org/10.1016/j.jhazmat.2013.02.045 pmid: 23518173
8 Thayer P S, Kensler C J, Rall D. Current status of the environmental and human safety aspects of nitrilotriacetic acid (NTA). Critical Reviews in Environmental Science and Technology, 1973, 3(1–4): 375–404
9 Ström L, Owen A G, Godbold D L, Jones D L. Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates. Soil Biology & Biochemistry, 2001, 33(15): 2125–2133
https://doi.org/10.1016/S0038-0717(01)00146-8
10 Seol Y, Javandel I. Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems. Chemosphere, 2008, 72(4): 537–542
https://doi.org/10.1016/j.chemosphere.2008.03.052 pmid: 18472129
11 Wen J, Stacey S P, McLaughlin M J, Kirby J K. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology & Biochemistry, 2009, 41(10): 2214–2221
https://doi.org/10.1016/j.soilbio.2009.08.006
12 Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 2004, 55(9): 1225–1233
https://doi.org/10.1016/j.chemosphere.2004.01.030 pmid: 15081763
13 Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D. Bhattacharyya1 D. Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Environmental Engineering Science, 2009, 26(4): 849–859
https://doi.org/10.1089/ees.2008.0277 pmid: 20418966
14 Northup A, Cassidy D. Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials, 2008, 152(3): 1164–1170
https://doi.org/10.1016/j.jhazmat.2007.07.096 pmid: 17804164
15 Qian Y, Zhou X, Zhang Y, Zhang W, Chen J. Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere, 2013, 91(5): 717–723
https://doi.org/10.1016/j.chemosphere.2013.01.049 pmid: 23466092
16 Goi A, Viisimaa M, Trapido M, Munter R. Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere, 2011, 82(8): 1196–1201
https://doi.org/10.1016/j.chemosphere.2010.11.053 pmid: 21146854
17 Zhang A, Wang J, Li Y. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization. Water Research, 2015, 71: 125–139
https://doi.org/10.1016/j.watres.2015.01.005 pmid: 25613412
18 Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials, 2015, 284: 253–260
https://doi.org/10.1016/j.jhazmat.2014.11.030 pmid: 25463240
19 Ahmad M, Teel A L, Furman O S, Reed J I, Watts R J. Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid–activated persulfate systems. Journal of Environmental Engineering, 2011, 138(4): 411–418
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000496
20 Liang C, Su H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558–5562
https://doi.org/10.1021/ie9002848
21 Tamura H, Goto K, Yotsuyanagi T, Nagayama M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 1974, 21(4): 314–318
https://doi.org/10.1016/0039-9140(74)80012-3 pmid: 18961462
22 Cohen I R, Purcell T C, Altshuller A P. Analysis of the oxidant in photooxidation reactions. Environmental Science & Technology, 1967, 1(3): 247–252
https://doi.org/10.1021/es60003a006
23 Vicente F, Rosas J, Santos A, Romero A. Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal, 2011, 172(2): 689–697
https://doi.org/10.1016/j.cej.2011.06.036
24 Xu J, Xin L, Huang T, Chang K. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation. Journal of Environmental Sciences (China), 2011, 23(11): 1873–1879
https://doi.org/10.1016/S1001-0742(10)60654-7 pmid: 22432313
25 Xue X, Hanna K, Despas C, Wu F, Deng N. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. Journal of Molecular Catalysis A Chemical, 2009, 311(1): 29–35
https://doi.org/10.1016/j.molcata.2009.06.016
26 Gautier-Luneau I, Bertet P, Jeunet A, Serratrice G, Pierre J L. Iron-citrate complexes and free radicals generation: Is citric acid an innocent additive in foods and drinks? Biometals, 2007, 20(5): 793–796
https://doi.org/10.1007/s10534-006-9042-y pmid: 17390216
27 Voelker B M, Sulzberger B. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environmental Science & Technology, 1996, 30(4): 1106–1114
https://doi.org/10.1021/es9502132
28 Ma Y, Zhang B T, Zhao L, Guo G, Lin J M. Study on the generation mechanism of reactive oxygen species on calcium peroxide by chemiluminescence and UV-visible spectra. Luminescence, 2007, 22(6): 575–580
https://doi.org/10.1002/bio.1003 pmid: 17768715
29 de Laat J, Le Truong G. Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environmental Science & Technology, 2005, 39(6): 1811–1818
https://doi.org/10.1021/es0493648 pmid: 15819241
30 Liao C H, Kang S F, Wu F A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 2001, 44(5): 1193–1200
https://doi.org/10.1016/S0045-6535(00)00278-2 pmid: 11513408
31 Wang Q, Lemley A T. Kinetic effect of humic acid on alachlor degradation by anodic Fenton treatment. Journal of Environmental Quality, 2004, 33(6): 2343–2352
https://doi.org/10.2134/jeq2004.2343 pmid: 15537957
32 Chen G, Hoag G E, Chedda P, Nadim F, Woody B A, Dobbs G M. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials, 2001, 87(1–3): 171–186
https://doi.org/10.1016/S0304-3894(01)00263-1 pmid: 11566408
33 Qiang Z, Ben W, Huang C P. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform. Frontiers of Environmental Science & Engineering in China, 2008, 2(4): 397–409
https://doi.org/10.1007/s11783-008-0074-0
34 Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D. Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Environmental Engineering Science, 2009, 26(4): 849–859
https://doi.org/10.1089/ees.2008.0277 pmid: 20418966
35 Li K, Stefan M I, Crittenden J C. Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling. Environmental Science & Technology, 2007, 41(5): 1696–1703
https://doi.org/10.1021/es0607638 pmid: 17396662
[1] FSE-16002-OF-ZX_suppl_1 Download
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Tianyi Li, Chengwu Zhang, Jingyi Zhang, Song Yan, Chuanyu Qin. Remediation of 2,4-dichlorophenol-contaminated groundwater using nano-sized CaO2 in a two-dimensional scale tank[J]. Front. Environ. Sci. Eng., 2021, 15(5): 87-.
[3] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[4] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[5] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[6] Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 53-.
[7] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[8] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[9] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[10] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[11] Yafang Shi, Yunchao Dai, Ziwen Liu, Xiaofeng Nie, Song Zhao, Chi Zhang, Hanzhong Jia. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Front. Environ. Sci. Eng., 2020, 14(6): 106-.
[12] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[13] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[14] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[15] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed