Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (2) : 157-163    https://doi.org/10.1007/s11783-010-0018-3
Research articles
Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution
Xiaoxia OU1,Chong WANG2,Fengjie ZHANG2,Yan MA2,He LIU2,Xie QUAN3,
1.College of Life Science, Dalian Nationalities University, Dalian 116600, China;Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian 116024, China; 2.College of Life Science, Dalian Nationalities University, Dalian 116600, China; 3.Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian 116024, China;
 Download: PDF(283 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h−1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h−1). Compared with Fe(III) solution, the presence of€ salicylic€ acid€ significantly€ enhanced€ the€ formation€ of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (·OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.
Keywords salicylic acid      iron      atrazine      photodegradation      
Issue Date: 05 June 2010
 Cite this article:   
Xiaoxia OU,Fengjie ZHANG,He LIU, et al. Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution[J]. Front.Environ.Sci.Eng., 2010, 4(2): 157-163.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0018-3
https://academic.hep.com.cn/fese/EN/Y2010/V4/I2/157
Evgenidou E, Fytianos K. Photodegradationof triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry, 2002, 50: 6423―6427
Marchini S, Passerini L, Cesareo D, Tosato L. Herbicidal triazines: acute toxicity on daphnia, fish,and plants and analysis of its relationships with structural factors. Ecotoxicology and Environmental Safety, 1988, 16: 148―157
Bottoni P, Fumari E. Criteriafor evaluating the impact of pesticides on groundwater quality. The Science of the Total Environment, 1992, 123―124: 581―590
Fan X Z, Lu B, Gong A J. Dynamics of solar light photodegradationbehavior of atrazine on soil surface. Journalof Hazardous Materials, 2005, 117: 75―79
Muir D C G, Baker B E. The disappearanceand movement of three triazine herhicides and several of their degradationproducts in soil under field conditions. Weed Research, 1978, 18: 111―120
Dean J R, Wade G, Barnabas J J. Determination of triazineherbicides in environmental samples. Journalof Chromatography A, 1996, 733: 295―335
Chen C, Yang S G, Sun C, Gu C G, Xu B. Photolytic destruction ofendocrine disruptor atrazine in aqueous solution under UV irradiation:Products and pathways. Journal of HazardousMaterials, 2009, 172: 675―684
Pérez M H, Peñuela G, Maldonado M I, Malato O, Fernández-Ibáñez P, Oller I, Gernjak W, Malato S. Degradationof pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 2006, 64: 272―281
Lányi K, Dinya Z. Photodegradationstudy of some triazine-type herbicides. Microchemical Journal, 2003, 75(1): 1―14
Ou X X, Quan X, Chen S, Zhang F J, Zhao Y Z. Photocatalytic reaction byFe(III)-citrate complex and its effect on the photodegradation ofatrazine in aqueous solution. Journal ofPhotochemistry and Photobiology A: Chemistry, 2008, 197: 382―388
Lan Q, Li F B, Liu C S, Li X Z. Heterogeneous photodegradation of pentachlorophenol with maghemiteand oxalate under UV illumination. EnvironmentalScience and Technology, 2008, 42: 7918―7923
Balmer M E, Sulzberger B. Atrazinedegradation in irradiated iron/oxalate systems: Effects of pH andoxalate. Environmental Science and Technology, 1999, 33: 2418―2424
Ji H W, Song W J, Chen C C, Yuan H, Ma W H, Zhao J C. Anchored oxygen-donor coordination to iron for photodegradationof organic pollutants. Environmental Scienceand Technology, 2007, 41: 5103―5107
Ou X X, Quan X, Chen S, Zhao H M, Zhang Y B. Atrazine photodegradationin aqueous solution induced by interaction of humic acids and iron:photoformation of iron(II) and hydrogen peroxide. Journal of Agricultural and Food Chemistry, 2007, 55: 8650―8656
Ou X X, Chen S, Quan X, Zhao H M. Photoinductive activity of humic acid fractions with the presenceof Fe(III): The role of aromaticity and oxygen groups involved infractions. Chemosphere, 2008, 72: 925―931
Ou X X, Chen S, Quan X, Zhao H M. Photochemical activity and characterization of the complex of humicacids with iron(III). Journal of GeochemicalExploration, 2009, 102: 49―55
Yu C Y, Quan X, Ou X X, Chen S. Effectsof humic acid fractions with different polarities on the photodegradationof 2,4-D in aqueous environments. Frontiersof Environmental Science and Engineering in China, 2008, 2: 291―296
Yu C Y, Chen S, Quan X, Ou X X, Zhang Y B. Separation of phthalocyanine-likesubstances from humic acids using a molecular imprinting method andtheir photochemical activity under simulated sunlight irradiation. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6929―6931
Borah J M, Das M R, Mahiuddin S. Influence of anions on the adsorptionkinetics of salicylate onto α-alumina in aqueous medium. Journal ofColloid and Interface Science, 2007, 316: 260―267
Allen A O, Hochanadel C J, Ghormley J A, Davis T W. Decomposition of water and aqueous solutions under mixedfast neutron and gamma radiation. Journalof Chemical Physics, 1952, 56: 575―586
Davies G, Fataftah A, Radwan A, Raffauf R F, Ghabbour E A, Jansen S A. Isolation of humic acid fromthe terrestrial plant Brugmansia sanguinea. The Science of the Total Environment, 1997, 201: 79―87
Fu H B, Quan X, Liu Z Y, Chen S. Photoinducedtransformation of γ-HCH inthe presence of dissolved organic matter and enhanced photoreactiveactivity of humate-coated α-Fe2O3. Langmuir, 2004, 20: 4867―4873
Gu B, Schmit J, Chen Z, Liang L, McCarthy J F. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models. Environmental Scienceand Technology, 1994, 28: 38―46
Wilson C L, Hinman N W, Cooper W J, Brown C F. Hydrogen peroxide cycling in surface geothermal watersof yellow stone national park. EnvironmentalScience and Technology, 2000, 34: 2655―2662
He J, Ma W H, Song W J, Zhao J C, Qian X H, Zhang S B, Yu J C. Photoreactionof aromatic compounds at α-FeOOH/H2Ointerface in the presence of H2O2: Evidence for organic-goethite surface complex formation. Water Research, 2005, 39: 119―128
Faust B C, Hoigne J. Photolysisof Fe(III)-hydroxy complexes as sources of OH radicals in clouds,fog, and rain. Atmospheric Environment, 1990, 24A: 79―89
Stuglik Z, Zagorski Z P. Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrousions by OH radicals. Radiation Physicsand Chemistry, 1981, 17: 229―233
Yoshimura Y, Otsuka K, Uchiyama K, Tanaka H, Tamur K. Detection ofhydroxyl radicals with salicylic acid. Analytical Sciences, 1989, 5: 161―164

doi: 10.2116/analsci.5.161
Quan X, Zhang Y B, Chen S, Zhao Y Z, Yang F L. Generation of hydroxyl radicalin aqueous solution by microwave energy using activated carbon ascatalyst and its potential in removal of persistent organic substances. Journal of Molecular Catalysis A: Chemical, 2007, 263: 216―222

doi: 10.1016/j.molcata.2006.08.079
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Chunyan Wang, Jiangshan Wang, Yi Liu, Lei Zhang, Yong Sun, Jiuhui Qu. Less attention paid to waterborne SARS-CoV-2 spreading in Beijing urban communities[J]. Front. Environ. Sci. Eng., 2021, 15(5): 110-.
[3] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[4] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[5] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[6] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[7] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[8] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[9] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[10] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[11] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[12] Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He. Understanding building-occupant-microbiome interactions toward healthy built environments: A review[J]. Front. Environ. Sci. Eng., 2021, 15(4): 65-.
[13] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[14] Chi Zhang, Wenhui Kuang, Jianguo Wu, Jiyuan Liu, Hanqin Tian. Industrial land expansion in rural China threatens environmental securities[J]. Front. Environ. Sci. Eng., 2021, 15(2): 29-.
[15] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed