Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 65    https://doi.org/10.1007/s11783-020-1357-3
REVIEW ARTICLE
Understanding building-occupant-microbiome interactions toward healthy built environments: A review
Shuai Li1, Zhiyao Yang3, Da Hu1, Liu Cao1, Qiang He1,2()
1. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
2. Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996, USA
3. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
 Download: PDF(1130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The built environment, occupants, and microbiomes constitute an integrated ecosystem.

• This review summarizes research progress which has focused primarily on microbiomes.

• Critical research needs include studying impacts of occupant behaviors on microbiomes.

Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.

Keywords Microbiome      Built Environment      Occupant      Health     
Corresponding Author(s): Qiang He   
Issue Date: 23 October 2020
 Cite this article:   
Shuai Li,Zhiyao Yang,Da Hu, et al. Understanding building-occupant-microbiome interactions toward healthy built environments: A review[J]. Front. Environ. Sci. Eng., 2021, 15(4): 65.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1357-3
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/65
Fig.1  Bibliometric map based on the network of co-authorship relationships among 46 countries, with the color of the network representing publication count by country. The distance between countries in the network represents the level of collaboration, i.e. the smaller the distance between the two countries, the greater number of publications contributed by authors from both countries.
Fig.2  Author keyword co-occurrence patterns in MoBE literature. Each circle represents a keyword. The size of the circle is defined as the occurrence frequency of the keyword measured in terms of publications. The distance between the circles is an indication of the number of co-occurrences – the shorter the distance between two keywords, the stronger the relationship is.
Fig.3  Impacts of occupancy on MoBE.
Fig.4  Impacts of BE attributes on MoBE.
1 S H Abrishami, B D Tall, T J Bruursema, P S Epstein, D B Shah (1994). Bacterial adherence and viability on cutting board surfaces. Journal of Food Safety, 14(2): 153–172
https://doi.org/10.1111/j.1745-4565.1994.tb00591.x
2 R I Adams, A C Bateman, H M Bik, J F Meadow (2015a). Microbiota of the indoor environment: A meta-analysis. Microbiome, 3: 49
https://doi.org/10.1186/s40168-015-0108-3
3 R I Adams, S Bhangar, K C Dannemiller, J A Eisen, N Fierer, J A Gilbert, J L Green, L C Marr, S L Miller, J A Siegel, B Stephens, M S Waring, K Bibby (2016). Ten questions concerning the microbiomes of buildings. Building and Environment, 109: 224–234
https://doi.org/10.1016/j.buildenv.2016.09.001
4 R I Adams, S Bhangar, W Pasut, E A Arens, J W Taylor, S E Lindow, W W Nazaroff, T D Bruns (2015b). Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes. PLoS One, 10(5): e0128022
https://doi.org/10.1371/journal.pone.0128022
5 R I Adams, D L Lymperopoulou (2018). Lessons learned when looking for non-neutral ecological processes in the built environment: the bacterial and fungal microbiota of shower tiles. bioRxiv: 413773
https://doi.org/10.1101/413773
6 R I Adams, M Miletto, S E Lindow, J W Taylor, T D Bruns (2014). Airborne bacterial communities in residences: similarities and differences with fungi. PLoS One, 9(3): e91283
https://doi.org/10.1371/journal.pone.0091283
7 R I Adams, M Miletto, J W Taylor, T D Bruns (2013). Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal, 7(7): 1262–1273
https://doi.org/10.1038/ismej.2013.28
8 E Afshinnekoo, C Meydan, S Chowdhury, D Jaroudi, C Boyer, N Bernstein, J M Maritz, D Reeves, J Gandara, S Chhangawala, S Ahsanuddin, A Simmons, T Nessel, B Sundaresh, E Pereira, E Jorgensen, S O Kolokotronis, N Kirchberger, I Garcia, D Gandara, S Dhanraj, T Nawrin, Y Saletore, N Alexander, P Vijay, E M Henaff, P Zumbo, M Walsh, G D O’mullan, S Tighe, J T Dudley, A Dunaif, S Ennis, E O’halloran, T R Magalhaes, B Boone, A L Jones, T R Muth, K S Paolantonio, E Alter, E E Schadt, J Garbarino, R J Prill, J M Carlton, S Levy, C E Mason (2015). Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Systems, 1(1): 72–87
https://doi.org/10.1016/j.cels.2015.01.001
9 A E Aiello, E Larson (2003). Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet. Infectious Diseases, 3(8): 501–506
https://doi.org/10.1016/S1473-3099(03)00723-0
10 N O Ak, D O Cliver, C W Kaspar (1994). Decontamination of plastic and wooden cutting boards for kitchen use. Journal of Food Protection, 57(1): 23–30
https://doi.org/10.4315/0362-028X-57.1.23
11 J G Allen, L C Marr (2020). Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments. Indoor Air, 30(4): 557–558
https://doi.org/10.1111/ina.12697
12 B Andersen, J C Frisvad, I Søndergaard, I S Rasmussen, L S Larsen (2011). Associations between fungal species and water-damaged building materials. Applied and Environmental Microbiology, 77(12): 4180–4188
https://doi.org/10.1128/AEM.02513-10
13 D J Anderson, L F Chen, D J Weber, R W Moehring, S S Lewis, P F Triplett, M Blocker, P Becherer, J C Schwab, L P Knelson, Y Lokhnygina, W A Rutala, H Kanamori, M F Gergen, D J Sexton (2017). Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet, 389(10071): 805–814
https://doi.org/10.1016/S0140-6736(16)31588-4
14 M A Andersson, M Nikulin, U Köljalg, M C Andersson, F Rainey, K Reijula, E L Hintikka, M Salkinoja-Salonen (1997). Bacteria, molds, and toxins in water-damaged building materials. Applied and Environmental Microbiology, 63(2): 387–393
https://doi.org/10.1128/AEM.63.2.387-393.1997
15 J R Andrews, C Morrow, R P Walensky, R Wood (2014). Integrating social contact and environmental data in evaluating tuberculosis transmission in a South African township. Journal of Infectious Diseases, 210(4): 597–603
https://doi.org/10.1093/infdis/jiu138
16 M Arvand, K Jungkind, A Hack (2011). Contamination of the cold water distribution system of health care facilities by Legionella pneumophila: do we know the true dimension? Eurosurveillance, 16(16): 19844
17 ASHRAE (2019). ASHRAE Handbook – HVAC Applications.
18 G Ayerst (1969). The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5(2): 127–141
https://doi.org/10.1016/0022-474X(69)90055-1
19 A Barberán, R R Dunn, B J Reich, K Pacifici, E B Laber, H L Menninger, J M Morton, J B Henley, J W Leff, S L Miller, N Fierer (2015). The ecology of microscopic life in household dust. Proceedings of the Royal Society B: Biological Sciences, 282(1814): 20151139
20 C B Bazzoni (1914). The Destruction of bacteria through the action of light. American Journal of Public Health, 4(11): 975–992
https://doi.org/10.2105/AJPH.4.11.975
21 C Beans (2016). The Microbiome of green design: sustainable building practices may have unforeseen consequences for microbial communities and human health. Bioscience, 66(10): 801–806
https://doi.org/10.1093/biosci/biw107
22 A Besaratinia, J I Yoon, C Schroeder, S E Bradforth, M Cockburn, G P Pfeifer (2011). Wavelength dependence of ultraviolet radiation‐induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB Journal, 25(9): 3079–3091
https://doi.org/10.1096/fj.11-187336
23 N A Bokulich, Z T Lewis, K Boundy-Mills, D A Mills (2016). A new perspective on microbial landscapes within food production. Current Opinion in Biotechnology, 37: 182–189
https://doi.org/10.1016/j.copbio.2015.12.008
24 S Bonetta, S Bonetta, E Ferretti, F Balocco, E Carraro (2010). Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. Journal of Applied Microbiology, 108(5): 1576–1583
https://doi.org/10.1111/j.1365-2672.2009.04553.x
25 P Borella, M T Montagna, V Romano-Spica, S Stampi, G Stancanelli, M Triassi, R Neglia, I Marchesi, G Fantuzzi, D Tatò, C Napoli, G Quaranta, P Laurenti, E Leoni, G De Luca, C Ossi, M Moro, G R D’alcalà (2004). Legionella infection risk from domestic hot water. Emerging Infectious Diseases, 10(3): 457–464
https://doi.org/10.3201/eid1003.020707
26 P Borella, M T Montagna, S Stampi, G Stancanelli, V Romano-Spica, M Triassi, I Marchesi, A Bargellini, D Tatò, C Napoli, F Zanetti, E Leoni, M Moro, S Scaltriti, G Ribera D’alcalà, R Santarpia, S Boccia (2005). Legionella contamination in hot water of Italian hotels. Applied and Environmental Microbiology, 71(10): 5805–5813
https://doi.org/10.1128/AEM.71.10.5805-5813.2005
27 E Brągoszewska, I Biedroń, B Kozielska, J S Pastuszka (2018). Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Quality, Atmosphere & Health, 11(6): 729–740
https://doi.org/10.1007/s11869-018-0579-z
28 A M Bramley, S Dasgupta, J Skarbinski, L Kamimoto, A M Fry, L Finelli, S Jain (2012). Intensive care unit patients with 2009 pandemic influenza A (H1N1pdm09) virus infection- United States, 2009. Influenza and Other Respiratory Viruses, 6(6): e134–e142
https://doi.org/10.1111/j.1750-2659.2012.00385.x
29 P W Brickner, R L Vincent, M First, E Nardell, M Murray, W Kaufman (2003). The application of ultraviolet germicidal irradiation to control transmission of airborne disease: bioterrorism countermeasure. Public Health Reports, 118(2): 99–114
https://doi.org/10.1016/S0033-3549(04)50225-X
30 B Brooks, M R Olm, B A Firek, R Baker, B C Thomas, M J Morowitz, J F Banfield (2017). Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nature Communications, 8: 1814
https://doi.org/10.1038/s41467-017-02018-w
31 G Z Brown, J Kline, G Mhuireach, D Northcutt, J Stenson (2016). Making microbiology of the built environment relevant to design. Microbiome, 4: 6
https://doi.org/10.1186/s40168-016-0152-7
32 B A Brown-Elliott, R J Wallace, C Tichindelean, J C Sarria, S Mcnulty, R Vasireddy, L Bridge, C G Mayhall, C Turenne, M Loeffelholz (2011). Five-year outbreak of community- and hospital-acquired Mycobacterium porcinum infections related to public water supplies. Journal of Clinical Microbiology, 49(12): 4231–4238
https://doi.org/10.1128/JCM.05122-11
33 S J Bultman (2014). Emerging roles of the microbiome in cancer. Carcinogenesis, 35(2): 249–255
https://doi.org/10.1093/carcin/bgt392
34 H Y Buse, J Lu, I T Struewing, N J Ashbolt (2014). Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. International Journal of Hygiene and Environmental Health, 217(2–3): 219–225
https://doi.org/10.1016/j.ijheh.2013.04.005
35 E J Carlton, K Barton, P M Shrestha, J Humphrey, L S Newman, J L Adgate, E Root, S Miller (2019). Relationships between home ventilation rates and respiratory health in the Colorado Home Energy Efficiency and Respiratory Health (CHEER) study. Environmental Research, 169: 297–307
https://doi.org/10.1016/j.envres.2018.11.019
36 Y Chartier, C Pessoa-Silva (2009). Natural ventilation for infection control in health-care settings. World Health Organization
37 A Checinska, A J Probst, P Vaishampayan, J R White, D Kumar, V G Stepanov, G E Fox, H R Nilsson, D L Pierson, J Perry, K Venkateswaran (2015). Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome, 3: 50
https://doi.org/10.1186/s40168-015-0116-3
38 Y C Chen, K P Yu, W C Shao, C H Tseng, W C Pan (2018). Novel mold-resistant building materials impregnated with thermally reduced nano-silver. Indoor Air, 28(2): 276–286
https://doi.org/10.1111/ina.12443
39 D G Couret, P D R Díaz, D F A de la Rosa (2013). Influence of architectural design on indoor environment in apartment buildings in Havana. Renewable Energy, 50: 800–811
https://doi.org/10.1016/j.renene.2012.07.043
40 M L Coutinho, A Z Miller, M F Macedo (2015). Biological colonization and biodeterioration of architectural ceramic materials: An overview. Journal of Cultural Heritage, 16(5): 759–777
https://doi.org/10.1016/j.culher.2015.01.006
41 L T Curtis (2008). Prevention of hospital-acquired infections: review of non-pharmacological interventions. Journal of Hospital Infection, 69(3): 204–219
https://doi.org/10.1016/j.jhin.2008.03.018
42 N Cutler, H Viles (2010). Eukaryotic microorganisms and stone biodeterioration. Geomicrobiology Journal, 27(6–7): 630–646
https://doi.org/10.1080/01490451003702933
43 G D da Silva, E J Guidelli, G M De Queiroz-Fernandes, M R M Chaves, O Baffa, A Kinoshita (2019). Silver nanoparticles in building materials for environment protection against microorganisms. International Journal of Environmental Science and Technology, 16(3): 1239–1248
https://doi.org/10.1007/s13762-018-1773-0
44 M Dade-Robertson, A Keren-Paz, M Zhang, I Kolodkin-Gal (2017). Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology, 10(5): 1157–1163
https://doi.org/10.1111/1751-7915.12833
45 D Dai, A J Prussin II, L C Marr, P J Vikesland, M A Edwards, A Pruden (2017). Factors shaping the human exposome in the built environment: opportunities for engineering control. Environmental Science & Technology, 51(14): 7759–7774
https://doi.org/10.1021/acs.est.7b01097
46 T Dai, M S Vrahas, C K Murray, M R Hamblin (2012). Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2): 185–195
https://doi.org/10.1586/eri.11.166
47 K C Dannemiller (2019). Moving towards a robust definition for a “healthy” indoor microbiome. mSystems, 4(3): e00074–e19
https://doi.org/10.1128/mSystems.00074-19
48 K C Dannemiller, J F Gent, B P Leaderer, J Peccia (2016). Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air, 26(2): 179–192
https://doi.org/10.1111/ina.12205
49 K C Dannemiller, C J Weschler, J Peccia (2017). Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air, 27(2): 354–363
https://doi.org/10.1111/ina.12313
50 S Dedesko, J A Siegel (2015). Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome, 3: 71
https://doi.org/10.1186/s40168-015-0137-y
51 Y Deng, J Yao, X Wang, H Guo, D Duan (2012). Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One, 7(6): e39704
https://doi.org/10.1371/journal.pone.0039704
52 S C Doll (2002). Determination of limiting conditions for fungal growth in the built environment: Harvard School of Public Health, Department of Environmental Health
53 A M W Downing, T P Blunt (1878). III. Researches on the effect of light upon bacteria and other organisms. Proceedings of the Royal Society of London, 26(179–184): 488–500
54 R R Dunn, N Fierer, J B Henley, J W Leff, H L Menninger (2013). Home life: factors structuring the bacterial diversity found within and between homes. PLoS One, 8(5): e64133
https://doi.org/10.1371/journal.pone.0064133
55 M J Ege, M Mayer, A C Normand, J Genuneit, W O C M Cookson, C Braun-Fahrländer, D Heederik, R Piarroux, E Von Mutius (2011). Exposure to environmental microorganisms and childhood asthma. New England Journal of Medicine, 364(8): 701–709
https://doi.org/10.1056/NEJMoa1007302
56 A K Fahimipour, E M Hartmann, A Siemens, J Kline, D A Levin, H Wilson, C M Betancourt-Román, G Z Brown, M Fretz, D Northcutt, K N Siemens, C Huttenhower, J L Green, K Van Den Wymelenberg (2018). Daylight exposure modulates bacterial communities associated with household dust. Microbiome, 6: 175
https://doi.org/10.1186/s40168-018-0559-4
57 J O Falkinham (2010). Hospital water filters as a source of Mycobacterium avium complex. Journal of Medical Microbiology, 59(10): 1198–1202
https://doi.org/10.1099/jmm.0.022376-0
58 J O III Falkinham, M D Iseman, P De Haas, D Van Soolingen (2008). Mycobacterium avium in a shower linked to pulmonary disease. Journal of Water and Health, 6(2): 209–213
https://doi.org/10.2166/wh.2008.232
59 L M Feazel, L K Baumgartner, K L Peterson, D N Frank, J K Harris, N R Pace (2009). Opportunistic pathogens enriched in showerhead biofilms. Proceedings of the National Academy of Sciences of the United States of America, 106(38): 16393–16399
https://doi.org/10.1073/pnas.0908446106
60 M C Fitzpatrick, C T Bauch, J P Townsend, A P Galvani (2019). Modelling microbial infection to address global health challenges. Nature Microbiology, 4(10): 1612–1619
https://doi.org/10.1038/s41564-019-0565-8
61 G E Flores, S T Bates, J G Caporaso, C L Lauber, J W Leff, R Knight, N Fierer (2013). Diversity, distribution and sources of bacteria in residential kitchens. Environmental Microbiology, 15(2): 588–596
https://doi.org/10.1111/1462-2920.12036
62 G E Flores, S T Bates, D Knights, C L Lauber, J Stombaugh, R Knight, N Fierer (2011). Microbial biogeography of public restroom surfaces. PLoS One, 6(11): e28132
https://doi.org/10.1371/journal.pone.0028132
63 M J Fonseca, F Tavares (2011). The Bactericidal effect of sunlight. American Biology Teacher, 73(9): 548–552
https://doi.org/10.1525/abt.2011.73.9.8
64 M Frankel, G Bekö, M Timm, S Gustavsen, E W Hansen, A M Madsen (2012). Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Applied and Environmental Microbiology, 78(23): 8289–8297
https://doi.org/10.1128/AEM.02069-12
65 M Frankel, E W Hansen, A M Madsen (2014). Effect of relative humidity on the aerosolization and total inflammatory potential of fungal particles from dust-inoculated gypsum boards. Indoor Air, 24(1): 16–28
https://doi.org/10.1111/ina.12055
66 K E Fujimura, C C Johnson, D R Ownby, M J Cox, E L Brodie, S L Havstad, E M Zoratti, K J Woodcroft, K R Bobbitt, G Wegienka, H A Boushey, S V Lynch (2010). Man’s best friend? The effect of pet ownership on house dust microbial communities. Journal of Allergy and Clinical Immunology, 126(2): 410–412.e3
https://doi.org/10.1016/j.jaci.2010.05.042
67 S M Gibbons, T Schwartz, J Fouquier, M Mitchell, N Sangwan, J A Gilbert, S T Kelley (2015). Ecological succession and viability of human-associated microbiota on restroom surfaces. Applied and Environmental Microbiology, 81(2): 765–773
https://doi.org/10.1128/AEM.03117-14
68 J A Gilbert, B Stephens (2018). Microbiology of the built environment. Nature Reviews. Microbiology, 16(11): 661–670
https://doi.org/10.1038/s41579-018-0065-5
69 R P Goldman, M Travisano (2011). Experimental evolution of ultraviolet radiation resistance in Escherichia coli. Evolution; International Journal of Organic Evolution, 65(12): 3486–3498
https://doi.org/10.1111/j.1558-5646.2011.01438.x
70 C Grant, C A Hunter, B Flannigan, A F Bravery (1989). The moisture requirements of moulds isolated from domestic dwellings. International Biodeterioration & Biodegradation, 25(4): 259–284
https://doi.org/10.1016/0265-3036(89)90002-X
71 J L Green (2014). Can bioinformed design promote healthy indoor ecosystems? Indoor Air, 24(2): 113–115
https://doi.org/10.1111/ina.12090
72 F L Guerra, W Lopes, J C Cazarolli, M Lobato, A B Masuero, D C C Dal Molin, F M Bento, A Schrank, M H Vainstein (2019). Biodeterioration of mortar coating in historical buildings: microclimatic characterization, material, and fungal community. Building and Environment, 155: 195–209
https://doi.org/10.1016/j.buildenv.2019.03.017
73 B Gutarowska (2010). Metabolic activity of moulds as a factor of building materials biodegradation. Polish Journal of Microbiology, 59(2): 119–124
https://doi.org/10.33073/pjm-2010-018
74 O O Hänninen (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living: Springer, 277–302
75 B Hartmann, M Benson, A Junger, L Quinzio, R Rohrig, B Fengler, U W Farber, B Wille, G Hempelmann (2004). Computer keyboard and mouse as a reservoir of pathogens in an intensive care unit. Journal of Clinical Monitoring and Computing, 18(1): 7–12
https://doi.org/10.1023/B:JOCM.0000025279.27084.39
76 E A Hathway, C J Noakes, P A Sleigh, L A Fletcher (2011). CFD simulation of airborne pathogen transport due to human activities. Building and Environment, 46(12): 2500–2511
https://doi.org/10.1016/j.buildenv.2011.06.001
77 B Hegarty, K C Dannemiller, J Peccia (2018). Gene expression of indoor fungal communities under damp building conditions: implications for human health. Indoor Air, 28(4): 548–558
https://doi.org/10.1111/ina.12459
78 M Hessling, B Spellerberg, K Hoenes (2017). Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths- a review on existing data. FEMS Microbiology Letters, 364(2): fnw270
https://doi.org/10.1093/femsle/fnw270
79 B Heydenreich, I Bellinghausen, B König, W M Becker, S Grabbe, A Petersen, J Saloga (2012). Gram-positive bacteria on grass pollen exhibit adjuvant activity inducing inflammatory T cell responses. Clinical and Experimental Allergy, 42(1): 76–84
https://doi.org/10.1111/j.1365-2222.2011.03888.x
80 C P Hoang, K A Kinney, R L Corsi, P J Szaniszlo (2010). Resistance of green building materials to fungal growth. International Biodeterioration & Biodegradation, 64(2): 104–113
https://doi.org/10.1016/j.ibiod.2009.11.001
81 R A Hobday, S J Dancer (2013). Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives. Journal of Hospital Infection, 84(4): 271–282
https://doi.org/10.1016/j.jhin.2013.04.011
82 P Hoeksma, A Aarnink, N Ogink (2015). Effect of temperature and relative humidity on the survival of airborne bacteria. Wageningen: Wageningen UR Livestock Research
83 A J Hoisington, L A Brenner, K A Kinney, T T Postolache, C A Lowry (2015). The microbiome of the built environment and mental health. Microbiome, 3: 60
https://doi.org/10.1186/s40168-015-0127-0
84 D Hospodsky, J Qian, W W Nazaroff, N Yamamoto, K Bibby, H Rismani-Yazdi, J Peccia (2012). Human occupancy as a source of indoor airborne bacteria. PLoS One, 7(4): e34867
https://doi.org/10.1371/journal.pone.0034867
85 D Hospodsky, N Yamamoto, W W Nazaroff, D Miller, S Gorthala, J Peccia (2015). Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air, 25(6): 641–652
https://doi.org/10.1111/ina.12172
86 E Y Hsiao, S W Mcbride, S Hsien, G Sharon, E R Hyde, T McCue, J A Codelli, J Chow, S E Reisman, J F Petrosino, P H Patterson, S K Mazmanian (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7): 1451–1463
https://doi.org/10.1016/j.cell.2013.11.024
87 J Hu, S Ben Maamar, A J Glawe, N Gottel, J A Gilbert, E M Hartmann (2019). Impacts of indoor surface finishes on bacterial viability. Indoor Air, 29(4): 551–562
https://doi.org/10.1111/ina.12558
88 A Hyvärinen, T Meklin, A Vepsäläinen, A Nevalainen (2002). Fungi and actinobacteria in moisture-damaged building materials—concentrations and diversity. International Biodeterioration & Biodegradation, 49(1): 27–37
https://doi.org/10.1016/S0964-8305(01)00103-2
89 H K Hyytiäinen, B Jayaprakash, P V Kirjavainen, S E Saari, R Holopainen, J Keskinen, K Hämeri, A Hyvärinen, B E Boor, M Täubel (2018). Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome, 6: 25
https://doi.org/10.1186/s40168-018-0405-8
90 Y S Jeon, J Chun, B S Kim (2013). Identification of household bacterial community and analysis of species shared with human microbiome. Current Microbiology, 67(5): 557–563
https://doi.org/10.1007/s00284-013-0401-y
91 R L P Jump, M J Pultz, C J Donskey (2007). Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrobial Agents and Chemotherapy, 51(8): 2883–2887
https://doi.org/10.1128/AAC.01443-06
92 V Jurado, A Z Miller, S Cuezva, A Fernandez-Cortes, D Benavente, M A Rogerio-Candelera, J Reyes, J C Cañaveras, S Sanchez-Moral, C Saiz-Jimenez (2014). Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche (Mexico): a case of tertiary bioreceptivity. Construction & Building Materials, 53: 348–359
https://doi.org/10.1016/j.conbuildmat.2013.11.114
93 K Kang, Y Ni, J Li, L Imamovic, C Sarkar, M D Kobler, Y Heshiki, T Zheng, S Kumari, J C Y Wong, A Archna, C W M Wong, C Dingle, S Denizen, D M Baker, M O A Sommer, C J Webster, G Panagiotou (2018). The environmental exposures and inner-and intercity traffic flows of the metro system may contribute to the skin microbiome and resistome. Cell Reports, 24(5): 1190–1202.e5
https://doi.org/10.1016/j.celrep.2018.06.109
94 A Karkman, J Lehtimäki, L Ruokolainen (2017). The ecology of human microbiota: dynamics and diversity in health and disease. Annals of the New York Academy of Sciences, 1399(1): 78–92
https://doi.org/10.1111/nyas.13326
95 S W Kembel, E Jones, J Kline, D Northcutt, J Stenson, A M Womack, B J M Bohannan, G Z Brown, J L Green (2012). Architectural design influences the diversity and structure of the built environment microbiome. ISME Journal, 6(8): 1469–1479
https://doi.org/10.1038/ismej.2011.211
96 S W Kembel, J F Meadow, T K O’connor, G Mhuireach, D Northcutt, J Kline, M Moriyama, G Z Brown, B J M Bohannan, J L Green (2014). Architectural design drives the biogeography of indoor bacterial communities. PLoS One, 9(1): e87093
https://doi.org/10.1371/journal.pone.0087093
97 E M Kettleson, A Adhikari, S Vesper, K Coombs, R Indugula, T Reponen (2015). Key determinants of the fungal and bacterial microbiomes in homes. Environmental Research, 138: 130–135
https://doi.org/10.1016/j.envres.2015.02.003
98 P V Kirjavainen, A M Karvonen, R I Adams, M Täubel, M Roponen, P Tuoresmäki, G Loss, B Jayaprakash, M Depner, M J Ege, H Renz, P I Pfefferle, B Schaub, R Lauener, A Hyvärinen, R Knight, D J J Heederik, E Von Mutius, J Pekkanen (2019). Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 25(7): 1089–1095
https://doi.org/10.1038/s41591-019-0469-4
99 N E Klepeis, W C Nelson, W R Ott, J P Robinson, A M Tsang, P Switzer, J V Behar, S C Hern, W H Engelmann (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3): 231–252
https://doi.org/10.1038/sj.jea.7500165
100 S Kline, S Cameron, A Streifel, M A Yakrus, F Kairis, K Peacock, J Besser, R C Cooksey (2004). An outbreak of bacteremias associated with Mycobacterium mucogenicum in a hospital water supply. Infection Control and Hospital Epidemiology, 25(12): 1042–1049
https://doi.org/10.1086/502341
101 S Kotay, W Chai, W Guilford, K Barry, A J Mathers (2017). Spread from the sink to the patient: in situ study using green fluorescent protein (GFP)-expressing Escherichia coli to model bacterial dispersion from hand-washing sink-trap reservoirs. Applied and Environmental Microbiology, 83(8): e03327–16
https://doi.org/10.1128/AEM.03327-16
102 T Kovesi, C Zaloum, C Stocco, D Fugler, R E Dales, A Ni, N Barrowman, N L Gilbert, J D Miller (2009). Heat recovery ventilators prevent respiratory disorders in Inuit children. Indoor Air, 19(6): 489–499
https://doi.org/10.1111/j.1600-0668.2009.00615.x
103 R B Kundsin (1988). Architectural design and indoor microbial pollution. Oxford University Press, USA
104 A Laborel-Préneron, K Ouédraogo, A Simons, M Labat, A Bertron, C Magniont, C Roques, C Roux, J E Aubert (2018). Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment, 142: 11–21
https://doi.org/10.1016/j.buildenv.2018.06.003
105 C S Lau, R S Chamberlain (2016). Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. International Journal of General Medicine, 9: 27–37
106 S Lax, C Cardona, D Zhao, V J Winton, G Goodney, P Gao, N Gottel, E M Hartmann, C Henry, P M Thomas, S T Kelley, B Stephens, J A Gilbert (2019). Microbial and metabolic succession on common building materials under high humidity conditions. Nature Communications, 10: 1767
https://doi.org/10.1038/s41467-019-09764-z
107 S Lax, D P Smith, J Hampton-Marcell, S M Owens, K M Handley, N M Scott, S M Gibbons, P Larsen, B D Shogan, S Weiss, J L Metcalf, L K Ursell, Y Vazquez-Baeza, W Van Treuren, N A Hasan, M K Gibson, R Colwell, G Dantas, R Knight, J A Gilbert (2014). Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345(6200): 1048–1052
https://doi.org/10.1126/science.1254529
108 P C Lee, H N Su (2010). Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation-Management, Policy & Practice, 12(1): 26–40
https://doi.org/10.5172/impp.12.1.26
109 M H Y Leung, P K H Lee (2016). The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome, 4: 21
https://doi.org/10.1186/s40168-016-0165-2
110 M H Y Leung, D Wilkins, E K T Li, F K F Kong, P K H Lee (2014). Indoor-air microbiome in an urban subway network: diversity and dynamics. Applied and Environmental Microbiology, 80(21): 6760–6770
https://doi.org/10.1128/AEM.02244-14
111 J Levin, L S Riley, C Parrish, D English, S Ahn (2013). The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. American Journal of Infection Control, 41(8): 746–748
https://doi.org/10.1016/j.ajic.2013.02.010
112 W G Lindsley, F M Blachere, R E Thewlis, A Vishnu, K A Davis, G Cao, J E Palmer, K E Clark, M A Fisher, R Khakoo, D H Beezhold (2010). Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One, 5(11): e15100
https://doi.org/10.1371/journal.pone.0015100
113 D Lins de Sousa, R Araújo Lima, I C Zanin, M I Klein, M N Janal, S Duarte (2015). Effect of twice-daily blue light treatment on matrix-rich biofilm development. PLoS One, 10(7): e0131941
https://doi.org/10.1371/journal.pone.0131941
114 G Liu, C M Tang, R M Exley (2015). Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology-SGM, 161(7): 1297–1312
https://doi.org/10.1099/mic.0.000086
115 J Lloyd-Price, G Abu-Ali, C Huttenhower (2016). The healthy human microbiome. Genome Medicine, 8: 51
https://doi.org/10.1186/s13073-016-0307-y
116 G U Lopez, C P Gerba, A H Tamimi, M Kitajima, S L Maxwell, J B Rose (2013). Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions. Applied and Environmental Microbiology, 79(18): 5728–5734
https://doi.org/10.1128/AEM.01030-13
117 C A Lowry, D G Smith, P H Siebler, D Schmidt, C E Stamper, J E Hassell Jr, P S Yamashita, J H Fox, S O Reber, L A Brenner, A J Hoisington, T T Postolache, K A Kinney, D Marciani, M Hernandez, S M J Hemmings, S Malan-Muller, K P Wright, R Knight, C L Raison, G A W Rook (2016). The Microbiota, immunoregulation, and mental Health: Implications for public health. Current Environmental Health Reports, 3(3): 270–286
https://doi.org/10.1007/s40572-016-0100-5
118 A Lugauskas, L Levinskaite, D Peciulyte (2003). Micromycetes as deterioration agents of polymeric materials. International Biodeterioration & Biodegradation, 52(4): 233–242
https://doi.org/10.1016/S0964-8305(03)00110-0
119 J C Luongo, A Barberan, R Hacker-Cary, E E Morgan, S L Miller, N Fierer (2017). Microbial analyses of airborne dust collected from dormitory rooms predict the sex of occupants. Indoor Air, 27(2): 338–344
https://doi.org/10.1111/ina.12302
120 M Maclean, J G Anderson, S J Macgregor, T White, C D Atreya (2016). A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma. Journal of Blood Transfusion, 2016: 1–11
https://doi.org/10.1155/2016/2920514
121 N Madhav, B Oppenheim, M Gallivan, P Mulembakani, E Rubin, N Wolfe (2017). Pandemics: Risks, Impacts, and Mitigation: The World Bank, 315–345
122 A Mahnert, C Moissl-Eichinger, G Berg (2015). Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Frontiers in Microbiology, 6: 887
https://doi.org/10.3389/fmicb.2015.00887
123 I Marchesi, P Marchegiano, A Bargellini, S Cencetti, G Frezza, M Miselli, P Borella (2011). Effectiveness of different methods to control legionella in the water supply: ten-year experience in an Italian university hospital. Journal of Hospital Infection, 77(1): 47–51
https://doi.org/10.1016/j.jhin.2010.09.012
124 W Mathys, J Stanke, M Harmuth, E Junge-Mathys (2008). Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. International Journal of Hygiene and Environmental Health, 211(1–2): 179–185
https://doi.org/10.1016/j.ijheh.2007.02.004
125 J F Meadow, A E Altrichter, A C Bateman, J Stenson, G Z Brown, J L Green, B J M Bohannan (2015). Humans differ in their personal microbial cloud. PeerJ, 3: e1258
https://doi.org/10.7717/peerj.1258
126 J F Meadow, A E Altrichter, S W Kembel, J Kline, G Mhuireach, M Moriyama, D Northcutt, T K O’connor, A M Womack, G Z Brown, J L Green, B J M Bohannan (2014a). Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 24(1): 41–48
https://doi.org/10.1111/ina.12047
127 J F Meadow, A E Altrichter, S W Kembel, M Moriyama, T K O’connor, A M Womack, G Z Brown, J L Green, B J M Bohannan (2014b). Bacterial communities on classroom surfaces vary with human contact. Microbiome, 2: 7
https://doi.org/10.1186/2049-2618-2-7
128 A B A Medeiros, B C Enders, A L B C Lira (2015). The Florence Nightingale’s environmental theory: a critical analysis. Escola Anna Nery, 19(3): 518–524
https://doi.org/10.5935/1414-8145.20150069
129 F Memarzadeh (2013). Literature review: room ventilation and airborne disease transmission. American Society for Healthcare Engineering
130 D Menzies, J Popa, J A Hanley, T Rand, D K Milton (2003). Effect of ultraviolet germicidal lights installed in office ventilation systems on workers’ health and wellbeing: double-blind multiple crossover trial. Lancet, 362(9398): 1785–1791
https://doi.org/10.1016/S0140-6736(03)14897-0
131 M Miletto, S E Lindow (2015). Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome, 3: 61
https://doi.org/10.1186/s40168-015-0128-z
132 R Miller, S Simmons, C Dale, J Stachowiak, M Stibich (2015). Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility. American Journal of Infection Control, 43(12): 1350–1353
https://doi.org/10.1016/j.ajic.2015.07.029
133 V Mouchtouri, E Velonakis, A Tsakalof, C Kapoula, G Goutziana, A Vatopoulos, J Kremastinou, C Hadjichristodoulou (2007). Risk factors for contamination of hotel water distribution systems by Legionella species. Applied and Environmental Microbiology, 73(5): 1489–1492
https://doi.org/10.1128/AEM.02191-06
134 D Mudarri, W J Fisk (2007). Public health and economic impact of dampness and mold. Indoor Air, 17(3): 226–235
https://doi.org/10.1111/j.1600-0668.2007.00474.x
135 N Mukherjee, S Dowd, A Wise, S Kedia, V Vohra, P Banerjee (2014). Diversity of bacterial communities of fitness center surfaces in a U.S. metropolitan area. International Journal of Environmental Research and Public Health, 11(12): 12544–12561
https://doi.org/10.3390/ijerph111212544
136 A Nagaraja, P Visintainer, J P Haas, J Menz, G P Wormser, M A Montecalvo (2015). Clostridium difficile infections before and during use of ultraviolet disinfection. American Journal of Infection Control, 43(9): 940–945
https://doi.org/10.1016/j.ajic.2015.05.003
137 NASEM (2017). Microbiomes of the built environment: a research agenda for indoor microbiology, human health, and buildings: National Academies Press
138 W W Nazaroff, C J Weschler (2004). Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmospheric Environment, 38(18): 2841–2865
https://doi.org/10.1016/j.atmosenv.2004.02.040
139 J A Nice, S Bole (2016). Investigating the impact of architectural planning and functional program on the indoor microbiome. A health concern. In: Proceeding of the 14th International Conference of Indoor Air Quality and Climate Ghent, Belgium
140 F Nightingale (1863). Notes on hospitals. Longman, Green, Longman, Roberts, and Green
141 T Nordahl Petersen, S Rasmussen, H Hasman, C Carøe, J Bælum, A Charlotte Schultz, L Bergmark, C A Svendsen, O Lund, T Sicheritz-Pontén, F M Aarestrup (2015). Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports, 5: 11444
https://doi.org/10.1038/srep11444
142 NRC (2006). Drinking Water Distribution Systems: Assessing and Reducing Risks. National Academies Press
143 N Ondrusch, J Kreft (2011). Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One, 6(1): e16151
https://doi.org/10.1371/journal.pone.0016151
144 O J Oppezzo (2012). Contribution of UVB radiation to bacterial inactivation by natural sunlight. Journal of Photochemistry and Photobiology. B, Biology, 115: 58–62
https://doi.org/10.1016/j.jphotobiol.2012.06.011
145 A L Pasanen, T Juutinen, M J Jantunen, P Kalliokoski (1992). Occurrence and moisture requirements of microbial growth in building materials. International Biodeterioration & Biodegradation, 30(4): 273–283
https://doi.org/10.1016/0964-8305(92)90033-K
146 C Paszko-Kolva, T K Sawyer, C J Palmer, T A Nerad, R Fayer (1998). Examination of microbial contaminants of emergency showers and eyewash stations. Journal of Industrial Microbiology & Biotechnology, 20(3–4): 139–143
https://doi.org/10.1038/sj.jim.2900491
147 V Patra, S N Byrne, P Wolf (2016). The skin microbiome: Is it affected by UV-induced immune suppression? Frontiers in Microbiology, 7: 1235
https://doi.org/10.3389/fmicb.2016.01235
148 S D Perkins, J Mayfield, V Fraser, L T Angenent (2009). Potentially pathogenic bacteria in shower water and air of a stem cell transplant unit. Applied and Environmental Microbiology, 75(16): 5363–5372
https://doi.org/10.1128/AEM.00658-09
149 A-M Pessi, J Suonketo, M Pentti, M Kurkilahti, K Peltola, Rantio-Lehtimaki, A (2002). Microbial growth inside insulated external walls as an indoor air biocontamination source. Applied and Environmental Microbiology, 68(2): 963–967
https://doi.org/10.1128/AEM.68.2.963-967.2002
150 K Ponsoni, M S G Raddi (2010). Indoor air quality related to occupancy at an air-conditioned public building. Brazilian Archives of Biology and Technology, 53(1): 99–103
https://doi.org/10.1590/S1516-89132010000100013
151 B M Popkin (1999). Urbanization, lifestyle changes and the nutrition transition. World Development, 27(11): 1905–1916
https://doi.org/10.1016/S0305-750X(99)00094-7
152 K A Prather, C C Wang, R T Schooley (2020). Reducing transmission of SARS-CoV-2. Science, 368(6498): 1422–1424
https://doi.org/10.1126/science.abc6197
153 S L Prescott, D L Larcombe, A C Logan, C West, W Burks, L Caraballo, M Levin, E V Etten, P Horwitz, A Kozyrskyj, D E Campbell (2017). The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organization Journal, 10: 29
https://doi.org/10.1186/s40413-017-0160-5
154 C R Proctor, D Dai, M A Edwards, A Pruden (2017). Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome, 5: 130
https://doi.org/10.1186/s40168-017-0348-5
155 A J II Prussin, D O Schwake, L C Marr (2017). Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Building and Environment, 123: 684–695
https://doi.org/10.1016/j.buildenv.2017.06.024
156 A T Purcell (1987). The relationship between buildings and behaviour. Building and Environment, 22(3): 215–232
https://doi.org/10.1016/0360-1323(87)90010-2
157 W C W S Putri, D J Muscatello, M S Stockwell, A T Newall (2018). Economic burden of seasonal influenza in the United States. Vaccine, 36(27): 3960–3966
https://doi.org/10.1016/j.vaccine.2018.05.057
158 J Qian, D Hospodsky, N Yamamoto, W W Nazaroff, J Peccia (2012). Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air, 22(4): 339–351
https://doi.org/10.1111/j.1600-0668.2012.00769.x
159 V K Ridaura, J J Faith, F E Rey, J Cheng, A E Duncan, A L Kau, N W Griffin, V Lombard, B Henrissat, J R Bain, M J Muehlbauer, O Ilkayeva, C F Semenkovich, K Funai, D K Hayashi, B J Lyle, M C Martini, L K Ursell, J C Clemente, W Van Treuren, W A Walters, R Knight, C B Newgard, A C Heath, J I Gordon (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150): 1241214
https://doi.org/10.1126/science.1241214
160 H Rintala, A Nevalainen, M Suutari (2002). Diversity of streptomycetes in water-damaged building materials based on 16S rDNA sequences. Letters in Applied Microbiology, 34(6): 439–443
https://doi.org/10.1046/j.1472-765X.2002.01120.x
161 M A Riva, M Benedetti, G Cesana (2014). Pandemic fear and literature: Observations from Jack London’s The Scarlet Plague. Emerging Infectious Diseases, 20(10): 1753–1757
https://doi.org/10.3201/eid2010.130278
162 J M Rivera, L Aguilar, J J Granizo, A Vos-Arenilla, M J Giménez, J M Aguiar, J Prieto (2007). Isolation of Legionella species/serogroups from water cooling systems compared with potable water systems in Spanish healthcare facilities. Journal of Hospital Infection, 67(4): 360–366
https://doi.org/10.1016/j.jhin.2007.07.022
163 C E Robertson, L K Baumgartner, J K Harris, K L Peterson, M J Stevens, D N Frank, N R Pace (2013). Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Applied and Environmental Microbiology, 79(11): 3485–3493
https://doi.org/10.1128/AEM.00331-13
164 A A Ross, A C Doxey, J D Neufeld (2017). The skin microbiome of cohabiting couples. mSystems, 2(4): e00043–17
https://doi.org/10.1128/mSystems.00043-17
165 A A Ross, J D Neufeld (2015). Microbial biogeography of a university campus. Microbiome, 3: 66
https://doi.org/10.1186/s40168-015-0135-0
166 J L Round, S K Mazmanian (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews. Immunology, 9(5): 313–323
https://doi.org/10.1038/nri2515
167 M Salathe, M Kazandjieva, J W Lee, P Levis, M W Feldman, J H Jones (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences of the United States of America, 107(51): 22020–22025
https://doi.org/10.1073/pnas.1009094108
168 B S Sandhu, C K Singh (2009). Relationship of sunlight and humidity on the virulence of street rabies virus in saliva. Indian Journal of Animal Sciences, 79: 24
169 O Seppanen, W J Fisk (2002). Relationship of SBS-symptoms and ventilation system type in office buildings. In: Proceedings of 9th International Conference on Indoor Air Quality and Climate, Monterey, California
170 P J Sheffer, J E Stout, M M Wagener, R R Muder (2005). Efficacy of new point-of-use water filter for preventing exposure to Legionella and waterborne bacteria. American Journal of Infection Control, 33(5): S20–S25
https://doi.org/10.1016/j.ajic.2005.03.012
171 A Simons, A Bertron, C Roux, A Laborel-Préneron, J E Aubert, C Roques (2019). Susceptibility of earth-based construction materials to fungal proliferation: laboratory and in situ assessment. RILEM Technical Letters, 3: 140–149
https://doi.org/10.21809/rilemtechlett.2018.69
172 D Sliney (2013). Balancing the risk of eye irritation from UV-C with infection from bioaerosols. Photochemistry and Photobiology, 89(4): 770–776
https://doi.org/10.1111/php.12093
173 D P Smith, J C Alverdy, J A Siegel (2013). Design considerations for home and hospital microbiome studies: National Academies Press
174 B K Stefanowski, S F Curling, G A Ormondroyd (2017). A rapid screening method to determine the susceptibility of bio-based construction and insulation products to mould growth. International Biodeterioration & Biodegradation, 116: 124–132
https://doi.org/10.1016/j.ibiod.2016.10.025
175 E R M Sydnor, G Bova, A Gimburg, S E Cosgrove, T M Perl, L L Maragakis (2012). Electronic-eye faucets: Legionella species contamination in healthcare settings. Infection Control and Hospital Epidemiology, 33(3): 235–240
https://doi.org/10.1086/664047
176 A Takada, K Matsushita, S Horioka, Y Furuichi, Y Sumi (2017). Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health, 17: 96
https://doi.org/10.1186/s12903-017-0382-5
177 J W Tang (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6(suppl_6): S737–S746
https://doi.org/10.1098/rsif.2009.0227.focus
178 M Täubel, H K Leppänen (2017). Microbial Exposures in Schools and Daycare Centers: in Exposure to Microbiological Agents in Indoor and Occupational Environments Springer International Publishing, 253–287
179 V Thomas, K Herrera-Rimann, D S Blanc, G Greub (2006). Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Applied and Environmental Microbiology, 72(4): 2428–2438
https://doi.org/10.1128/AEM.72.4.2428-2438.2006
180 R Thomson, C Tolson, R Carter, C Coulter, F Huygens, M Hargreaves (2013). Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. Journal of Clinical Microbiology, 51(9): 3006–3011
https://doi.org/10.1128/JCM.00899-13
181 S G Tringe, T Zhang, X Liu, Y Yu, W H Lee, J Yap, F Yao, S T Suan, S K Ing, M Haynes, F Rohwer, C L Wei, P Tan, J Bristow, E M Rubin, Y Ruan (2008). The airborne metagenome in an indoor urban environment. PLoS One, 3(4): e1862
https://doi.org/10.1371/journal.pone.0001862
182 G A Tsongas, F Riordan (2016). Minimum conditions for visible mold growth. ASHRAE Journal, 58(9): 32
183 T Tuomi, K Reijula, T Johnsson, K Hemminki, E L Hintikka, O Lindroos, S Kalso, P Koukila-Kähkälä, H Mussalo-Rauhamaa, T Haahtela (2000). Mycotoxins in crude building materials from water-damaged buildings. Applied and Environmental Microbiology, 66(5): 1899–1904
https://doi.org/10.1128/AEM.66.5.1899-1904.2000
184 P J Turnbaugh, R E Ley, M A Mahowald, V Magrini, E R Mardis, J I Gordon (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122): 1027–1031
https://doi.org/10.1038/nature05414
185 C Udawattha, H Galkanda, I S Ariyarathne, G Y Jayasinghe, R Halwatura (2018). Mold growth and moss growth on tropical walls. Building and Environment, 137: 268–279
https://doi.org/10.1016/j.buildenv.2018.04.018
186 S Vacher, C Hernandez, C Bärtschi, N Poussereau (2010). Impact of paint and wall-paper on mould growth on plasterboards and aluminum. Building and Environment, 45(4): 916–921
https://doi.org/10.1016/j.buildenv.2009.09.011
187 D van der Kooij, H R Veenendaal, W J Scheffer (2005). Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Research, 39(13): 2789–2798
https://doi.org/10.1016/j.watres.2005.04.075
188 N J van Eck, L Waltman (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2): 523–538
https://doi.org/10.1007/s11192-009-0146-3
189 T Verdier, M Coutand, A Bertron, C Roques (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80: 136–149
https://doi.org/10.1016/j.buildenv.2014.05.030
190 H Wang, M Edwards, J O III Falkinham, A Pruden (2012). Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Applied and Environmental Microbiology, 78(17): 6285–6294
https://doi.org/10.1128/AEM.01492-12
191 T Warscheid, J Braams (2000). Biodeterioration of stone: a review. International Biodeterioration & Biodegradation, 46(4): 343–368
https://doi.org/10.1016/S0964-8305(00)00109-8
192 D J Weber, H Kanamori, W A Rutala (2016). ‘No touch’ technologies for environmental decontamination. Current Opinion in Infectious Diseases, 29(4): 424–431
https://doi.org/10.1097/QCO.0000000000000284
193 R West, S Michie, G J Rubin, R Amlôt (2020). Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nature Human Behaviour, 4(5): 451–459
https://doi.org/10.1038/s41562-020-0887-9
194 D Wilkins, M H Y Leung, P K H Lee (2016). Indoor air bacterial communities in Hong Kong households assemble independently of occupant skin microbiomes. Environmental Microbiology, 18(6): 1754–1763
https://doi.org/10.1111/1462-2920.12889
195 M M Williams, T H Chen, T Keane, N Toney, S Toney, C R Armbruster, W R Butler, M J Arduino (2011). Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility. Infection Control and Hospital Epidemiology, 32(9): 837–844
https://doi.org/10.1086/661282
196 P Wolkoff (2018). Indoor air humidity, air quality, and health – An overview. International Journal of Hygiene and Environmental Health, 221(3): 376–390
https://doi.org/10.1016/j.ijheh.2018.01.015
197 M Wood, S M Gibbons, S Lax, T W Eshoo-Anton, S M Owens, S Kennedy, J A Gilbert, J T Hampton-Marcell (2015). Athletic equipment microbiota are shaped by interactions with human skin. Microbiome, 3: 25
https://doi.org/10.1186/s40168-015-0088-3
198 R Wood, C Morrow, S Ginsberg, E Piccoli, D Kalil, A Sassi, R P Walensky, J R Andrews (2014). Quantification of shared air: A social and environmental determinant of airborne disease transmission. PLoS One, 9(9): e106622
https://doi.org/10.1371/journal.pone.0106622
199 T Wu, M Taubel, R Holopainen, A K Viitanen, S Vainiotalo, T Tuomi, J Keskinen, A Hyvarinen, K Hameri, S E Saari, B E Boor (2018). Infant and adult inhalation exposure to resuspended biological particulate matter. Environmental Science & Technology, 52(1): 237–247
https://doi.org/10.1021/acs.est.7b04183
200 N Yamamoto, D Hospodsky, K C Dannemiller, W W Nazaroff, J Peccia (2015). Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environmental Science & Technology, 49(8): 5098–5106
https://doi.org/10.1021/es506165z
201 H Yapicioglu, T G Gokmen, D Yildizdas, F Koksal, F Ozlu, E Kale-Cekinmez, K Mert, B Mutlu, M Satar, N Narli, A Candevir (2012). Pseudomonas aeruginosa infections due to electronic faucets in a neonatal intensive care unit. Journal of Paediatrics and Child Health, 48(5): 430–434
https://doi.org/10.1111/j.1440-1754.2011.02248.x
202 R You, W Cui, C Chen, B Zhao (2013). Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber. Aerosol and Air Quality Research, 13(3): 911–921
https://doi.org/10.4209/aaqr.2012.03.0061
203 V L Yu, J E Stout (2000). Hospital characteristics associated with colonization of water systems by Legionella and risk of nosocomial Legionnaires’ disease: A cohort study of 15 hospitals. Infection Control and Hospital Epidemiology, 21(7): 434–435
https://doi.org/10.1086/503229
204 Y Zhao, A J A Aarnink, R Dijkman, T Fabri, M C M De Jong, P W G Groot Koerkamp (2012). Effects of temperature, relative humidity, absolute humidity, and evaporation potential on survival of airborne Gumboro vaccine virus. Applied and Environmental Microbiology, 78(4): 1048–1054
https://doi.org/10.1128/AEM.06477-11
205 S M Zifferblatt (1972). Architecture and human behavior: Toward increased understanding of a functional relationship. Educational Technology, 12(8): 54–57
[1] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[2] Aifang Gao, Junyi Wang, Jianfei Luo, Aiguo Li, Kaiyu Chen, Pengfei Wang, Yiyi Wang, Jingyi Li, Jianlin Hu, Hongliang Zhang. Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei[J]. Front. Environ. Sci. Eng., 2021, 15(5): 82-.
[3] Liu Cao, Lu Yang, Clifford S. Swanson, Shuai Li, Qiang He. Comparative analysis of impact of human occupancy on indoor microbiomes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 89-.
[4] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[5] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[6] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[7] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[8] Huibin Guo, Ning Wang, Xiang Li. Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals[J]. Front. Environ. Sci. Eng., 2021, 15(2): 21-.
[9] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[10] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[11] Chao Liu, Hancheng Dai, Lin Zhang, Changchun Feng. The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China[J]. Front. Environ. Sci. Eng., 2019, 13(5): 70-.
[12] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[13] Guoxia MA, Jinnan WANG, Fang YU, Xiaomin GUO, Yanshen ZHANG, Chao LI. Assessing the premature death due to ambient particulate matter in China’s urban areas from 2004 to 2013[J]. Front. Environ. Sci. Eng., 2016, 10(5): 7-.
[14] Guoxia MA,Jinnan WANG,Fang YU,Yanshen ZHANG,Dong CAO. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard[J]. Front. Environ. Sci. Eng., 2016, 10(2): 288-298.
[15] Xuezhen QIU,Yun ZHU,Carey JANG,Che-Jen LIN,Shuxiao WANG,Joshua FU,Junping XIE,Jiandong WANG,Dian DING,Shicheng LONG. Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1056-1065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed