Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (4) : 731-741    https://doi.org/10.1007/s11708-018-0528-4
RESEARCH ARTICLE
Investigation of wind energy potentials in Brunei Darussalam
M. A. SALAM1(), M. G. YAZDANI1, Q. M. RAHMAN2, Dk NURUL1, S. F. MEI1, Syeed HASAN2
1. Faculty of Engineering, Universiti Teknologi Brunei, BE1410, Brunei Darussalam
2. Electrical and Computer Engineering, University of Western Ontario, London N6A 3K7, Canada
 Download: PDF(1550 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Conventional power generation mainly depends on natural gas and diesel oil in Brunei Darussalam. The power utility company is now thinking of power generation using natural wind. In this paper, wind energy, being one of the most readily available renewable energy sources, was studied. The wind characteristic, velocity and directions were studied using Weibull distribution based on the measurement of wind speed at two different locations in Brunei Darussalam. These wind speed distributions were modeled using the Wind Power program. The wind rose graph was obtained for the wind direction to analyze the wind power density onshore and offshore. Based on this analysis, it has been found that the wind speed of 3 to 5 m/s has a probability of occurrence of 40%. Besides, the annual energy production at a wind speed of 5 m/s has been found to be in the range between 1000 and 1500 kWh for both the locations in Brunei Darussalam.

Keywords wind speed      Weibull distribution      wind rose      wind energy      wind power     
Corresponding Author(s): M. A. SALAM   
Online First Date: 12 January 2018    Issue Date: 26 December 2019
 Cite this article:   
M. A. SALAM,M. G. YAZDANI,Q. M. RAHMAN, et al. Investigation of wind energy potentials in Brunei Darussalam[J]. Front. Energy, 2019, 13(4): 731-741.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0528-4
https://academic.hep.com.cn/fie/EN/Y2019/V13/I4/731
Fig.1  Hourly mean wind speed
Fig.2  Monthly mean speed from the year 2012–2014
Fig.3  Normalized frequency distribution with wind class speed for the years 2012–2014
Fig.4  Wind rose at location A from 2012 to 2014
Year/
Hours
Mean wind speed/(m?s−1)
2012 2013 2014
01 1.66 1.72 1.71
02 1.67 1.76 1.59
03 1.61 1.68 1.65
04 1.62 1.70 1.64
05 1.63 1.74 1.69
06 1.65 1.79 1.67
07 1.58 1.84 1.69
08 1.91 2.22 1.89
09 2.37 2.55 2.34
10 2.68 2.78 2.55
11 2.84 3.02 2.86
12 3.33 3.42 3.23
13 3.78 3.90 3.75
14 4.15 4.12 4.03
15 4.38 4.21 4.31
16 4.33 4.13 4.30
17 3.92 3.65 3.75
18 3.18 2.91 3.02
19 2.54 2.32 2.38
20 2.19 2.11 2.13
21 2.04 1.94 1.99
22 1.96 1.91 1.93
23 1.81 1.85 1.83
24 1.74 1.81 1.71
Tab.1  Hourly wind data at a height of 14 m AGL from 2012 to 2014
Time Wind direction/(°) Wind speed/(m?s–1) Time Wind direction/(°) Wind speed/(m?s−1)
15:10 36 3.17 16:40 358 5.2
15:15 38 2.87 16:45 357 4.91
15:20 36 2.96 16:50 355 4.86
15:25 37 3.34 16:55 353 5.43
15:30 36 3.38 17:00 358 4.76
15:35 39 3.25 17:05 358 5.06
15:40 37 2.68 17:10 351 5.16
15:45 32 3.06 17:15 346 4.78
15:50 33 3.1 17:20 351 5.12
15:55 36 3.44 17:25 353 4.91
16:00 41 4.63 17:30 352 5.23
16:05 16 3.89 17:35 357 4.44
16:10 17 4.55 17:40 349 4.46
16:15 20 4.5 17:45 348 5.08
16:20 22 5.12 17:50 345 5.1
16:25 358 4.42 17:55 349 4.76
16:30 350 5.01 16:00 349 4.32
16:35 356 4.67
Tab.2  Wind speed measurement at location B on February 2015
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
10:20 54 2.81 12:55 29.4 3.02
10:25 54 2.28 13:00 29.4 2.98
10:30 54 2.55 13:05 30.3 3.19
10:35 54 2.7 13:10 30.3 2.76
10:40 54 2.68 13:15 29.5 2.65
18:43 54 2.55 13:20 30.3 2.81
10:50 54 2.83 13:25 30.3 2.95
10:55 54 2.78 13:30 30.3 3.29
11:00 54 2.49 13:35 30.3 2.91
11:05 44 2.72 13:40 26 2.68
11:10 44 2.4 13:45 38 3.1
11:15 44 2.93 13:50 38 2.95
11:20 44 2.66 13:55 342 3.19
11:25 44 2.83 14:00 342 3.1
11:30 44 2.72 14:05 342 3.25
11:35 44 2.3 14:10 342 3.23
11:40 44 2.62 14:15 342 3.32
11:45 44 2.95 14:20 342 3.19
11:50 44 2.7 14:25 342 3.06
11:55 44 2.53 14:30 342 3.46
12:00 44 2.57 14:35 342 3.57
12:05 44 2.43 14:40 336 3.17
12:10 44 2.66 14:45 336 3.32
12:15 44 2.36 14:50 342 3.25
12:30 44 2.89 14:55 342 2.76
12:35 44 2.81 15:00 342 3.12
12:40 30.3 2.95 15:05 342 3.9
12:45 30.3 2.62 15:10 342 3.49
12:50 30.3 2.85
Tab.3  Wind speed measurement at location B on February13, 2015
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
11:50 42 2.19 14:05 22 2.43
11:55 42 1.75 14:10 22 2.41
12:00 48 2.78 14:15 22 2.36
12:05 48 2.5 14:20 15 1.89
12:10 48 2.17 14:25 15 1.87
12:15 24 1.98 14:30 38 3.04
12:20 24 1.78 14:35 38 2.72
12:25 24 1.5 14:40 24 2.6
12:30 25 2.34 14:45 24 2.58
12:35 25 1.85 14:50 24 2.5
12:40 26 3.54 14:55 24 2.43
12:45 26 3.21 15:00 24 2.43
12:50 26 2.75 15:05 24 2.37
12:55 29 3.7 15:10 19 2.41
13:00 29 3.45 15:15 18 1.95
13:05 52 3.24 15:20 18 1.67
13:10 55 3.45 15:25 16 1.64
13:15 29 3.07 15:30 52 3.26
13:20 41 1.56 15:35 52 3.12
13:25 46 2.63 15:40 47 2.46
13:30 46 2.54 15:45 47 2.46
13:35 46 2.54 15:50 40 2.38
13:40 17 2.84 15:55 42 2.51
13:45 17 1.95 16:00 12 2.84
13:50 11 2.67 16:05 43 3.04
13:55 11 2.45 16:10 37 3.46
14:00 22 2.72 16:15 39 3.72
Tab.4  Wind speed measurement at location B on February 28, 2015
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
4:20 41 3.75 6:15 46 3.27
4:25 41 4.39 6:20 46 4.23
4:30 41 5.01 6:25 46 4.88
4:35 41 4.67 6:30 59 2.42
4:40 51 3.87 6:35 59 2.78
4:45 51 4.27 6:40 56 3.46
4:50 51 3.86 6:45 56 2.89
4:55 55 3.45 6:50 55 3.78
5:00 56 3.74 6:55 55 4.67
5:05 55 3.7 7:00 51 3.78
5:10 55 3.76 7:05 48 3.67
5:15 55 3.46 7:10 48 3.46
5:20 65 4.11 7:15 48 3.07
5:25 65 3.78 7:20 48 3.47
5:30 41 4.75 7:25 65 2.75
5:35 59 3.75 7:30 55 3.79
5:40 59 2.68 7:35 41 4.18
5:45 59 2.87 7:40 46 5.23
5:50 65 2.46 7:45 32 4.65
5:55 65 2.97 7:50 32 5.01
6:00 41 4.32 7:55 41 4.21
6:05 32 4.76 8:00 41 5.37
6:10 46 4.67 8:05 41 4.32
Tab.5  Wind speed measurement at location B on March 1, 2015
Wind class/(m?s−1) Frequency distribution/%
2012 2013 2014
Calms 0.1 0.1 0.2
0.5–2.1 41.2 40.2 41.2
2.1–3.6 32.3 33.3 33.7
3.6–5.7 22.1 21.9 21.7
5.7–8.8 4.3 4.3 3.2
8.8–11 0 0.1 0.1
≥11 0 0 0
Tab.6  Normalized frequency distribution against wind class
Months v¯ k c
2012 2013 2014 2012 2013 2014 2012 2013 2014
January 2.77 2.86 2.51 3.45 3.70 4.33 3.08 3.18 2.76
February 2.51 3.07 2.71 2.85 2.94 2.85 2.82 3.45 3.04
March 2.65 2.59 2.89 2.56 2.77 2.85 2.98 2.91 3.25
April 2.40 2.50 2.39 2.77 2.94 2.77 2.70 2.81 2.69
May 2.29 2.30 2.40 2.56 3.03 2.43 2.57 2.58 2.70
June 2.55 2.27 2.25 2.37 3.63 2.49 2.87 2.55 2.53
July 2.50 2.56 2.28 2.56 2.94 2.56 2.81 2.88 2.56
August 2.56 2.40 2.41 2.37 2.70 2.43 2.88 2.70 2.71
September 2.41 2.56 2.45 2.70 2.49 2.77 2.71 2.88 2.75
October 2.47 2.55 2.50 2.70 2.63 2.85 2.78 2.87 2.81
November 2.48 2.42 2.53 2.94 3.12 2.94 2.79 2.72 2.84
December 2.68 2.48 2.68 3.03 3.03 2.77 3.01 2.79 3.01
Tab.7  Wind data and Weibull parameters at a height of 14 m for three years
Wind turbines Wind Energy Solution Tulipo SampreyWren Ampair 600-230 Earth-Tech ET500 Turby Urban Green Energy Eddy Windspire
HAWT/VAWT HAWT HAWT HAWT HAWT VAWT VAWT VAWT
No. of blades 3 3 3 3 3 3 3
Rotor diameter/m 5 1 1.7 2.5 2.6 1.8 3.1
Swept area/m2 19.6 0.8 2.3 4.9 5.3 2.5 7.5
Power rating/kW 2.5 0.3 0.7 0.5 2.5 0.6 1.2
Cut-in wind speed/(m?s−1) 2.5 3 3 2.5 3.5 3.5 4
Cut-off wind speed/(m?s−1) 20 25 30 25 14 25 14
Tab.8  Selective wind turbine specifications
Fig.5  Mean wind speed and Weibull parameters, k and c for three years
Fig.6  Power generation with different wind turbines at location A
Fig.7  Power coefficients for different wind turbines at location A
Fig.8  Annual energy generation at location A
Fig.9  Wind speed versus time at location B
Fig.10  Wind rose diagram for location B
Fig.11  Annual energy generation at location B
v Unsteady wind speed component
v Mean value of v
σ Standard deviation of wind speed
k A factor that determines the shape of the curve
c Scale parameter with unit of speed/(m?s−1)
ρ The density of air, 1.225 kg/m3
Ar The rotor cross-sectional area in m2
Um The average wind speed/(m?s−1)
  
1 S AL-Yahyai, Y Charabi, A Gastli, S Al-Alawi. Assessment of wind energy potential locations in Oman using data from existing weather stations. Renewable & Sustainable Energy Reviews, 2010, 14(5): 1428–1436
https://doi.org/10.1016/j.rser.2010.01.008
2 M G Yazdani, M A Salam. Investigation on available wind energy at Tungkubeach. Frontiers in Energy, 2012, 6(3): 275–279
https://doi.org/10.1007/s11708-012-0194-x
3 N I Orlova , U A Tadzhiev, R A Zakhidov, A I Anarbaev . Calculation of vertical profile of wind velocity and power of wind flow on desert plains. Applied Solar Energy, 2008, 44(4): 295–299
4 C B Li, H Y Chen, J Zhu, J Zuo, G Zillante, Z Y Zhao. Comprehensive assessment of flexibility of the wind power industry chain. Renewable Energy, 2015, 74(2): 18–26
https://doi.org/10.1016/j.renene.2014.07.045
5 J A Santos, C Rochinha, M L R Liberato, M Reyers, J G Pinto. Projected changes in wind energy potentials over Iberia. Renewable Energy, 2015, 75(3): 68–80
https://doi.org/10.1016/j.renene.2014.09.026
6 J Z Wang, S S Qin, Q P Zhou, H Y Jiang. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renewable Energy, 2015, 76(4): 91–101
https://doi.org/10.1016/j.renene.2014.11.011
7 D Djairam, P H F Morshuis, J J Smit. A novel method of wind energy generation-the electrostatic wind energy converter. IEEE Electrical Insulation Magazine, 2014, 30(4): 8–20
https://doi.org/10.1109/MEI.2014.6843763
8 R D Prasad, R C Bansal, M Sauturaga. Wind energy analysis for vadravadra site in Fiji Island: a case study. IEEE Transactions on Energy Conversion, 2009, 24(3): 750–757
https://doi.org/10.1109/TEC.2009.2025326
9 L Fagiano, T Marks. Design of a small-scale prototype for research in airborne wind energy. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 166–177
https://doi.org/10.1109/TMECH.2014.2322761
10 B G Kumaraswamy, B K Keshavan, Y T Ravikiran. Analysis of seasonal wind speed and wind power density distribution in Aimangala wind form at Chitradurga Karnataka using two parameter Weibull distribution function. In: 2011 IEEE Power and Energy Society General Meeting: the Electrification of Transportation and the Grid of the Future. Detroit, MI, USA, 2011, 6039587
11 A K Rajeevan, P V Shouri, U Nair. Identification of reliability of wind power generation and its mathematical modeling. In: 2013 Annual International Conference on Emerging Research Areas (AICERA 2013) and 2013 International Conference on Microelectronics, Communications and Renewable Energy (ICMiCR 2013). Kerala, India, 2013, 6576040
12 A M Elmabruk, F A Aleej, M M Badii. Estimation of wind energy in Libya. In: 2014 5th International Renewable Energy Congress (IREC 2014). Hammamet, Tunisia, 2014, 6826918
13 A Q Malik. Assessment of the potential of renewables for Brunei Darussalam. Renewable & Sustainable Energy Reviews, 2011, 15(1): 427–437
https://doi.org/10.1016/j.rser.2010.08.014
14 Horst Rinne. The Weibull Distribution: A Hand Book. Boca Raton: CRC Press, 2008
15 J Waewsak, C Chancham, M Landry, Y Gagnon. An analysis of wind speed distribution at Thasala, Nakhon Si Thammarat, Thailand. Journal of Sustainable Energy & Environment, 2011, 2: 51–55
[1] Alireza HEIDARI, Ali ESMAEEL NEZHAD, Ahmad TAVAKOLI, Navid REZAEI, Foad H. GANDOMAN, Mohammad Reza MIVEH, Abdollah AHMADI, Majid MALEKPOUR. A comprehensive review of renewable energy resources for electricity generation in Australia[J]. Front. Energy, 2020, 14(3): 510-529.
[2] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[3] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[4] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[5] Jiang LI, Guodong LIU, Shuo ZHANG. Smoothing ramp events in wind farm based on dynamic programming in energy internet[J]. Front. Energy, 2018, 12(4): 550-559.
[6] Zhao WANG, Weisheng WANG, Bo WANG. Regional wind power forecasting model with NWP grid data optimized[J]. Front. Energy, 2017, 11(2): 175-183.
[7] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[8] Seyed Mohsen MIRYOUSEFI AVAL,Amir AHADI,Hosein HAYATI. A novel method for reliability and risk evaluation of wind energy conversion systems considering wind speed correlation[J]. Front. Energy, 2016, 10(1): 46-56.
[9] Deepak SANGROYA,Jogendra NAYAK. Effectiveness of state incentives for promoting wind energy: A panel data examination[J]. Front. Energy, 2015, 9(3): 247-258.
[10] Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE. Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment[J]. Front. Energy, 2015, 9(1): 7-21.
[11] Shantanu ACHARYA,Subhadeep BHATTACHARJEE. Analysis and characterization of wind-solar-constant torque spring hybridized model[J]. Front. Energy, 2014, 8(3): 279-289.
[12] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
[13] O. D. OHIJEAGBON,Oluseyi. O AJAYI. Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west Nigeria[J]. Front. Energy, 2014, 8(2): 145-159.
[14] Hicham SERHOUD, Djilani BENATTOUS. Simulation of grid connection and maximum power point tracking control of brushless doubly-fed generator in wind power system[J]. Front Energ, 2013, 7(3): 380-387.
[15] Muyiwa S. ADARAMOLA, Olarenwaju M. OYEWOLA, Olayinka S. OHUNAKIN, Rufus R. DINRIFO. Techno-economic evaluation of wind energy in southwest Nigeria[J]. Front Energ, 2012, 6(4): 366-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed