Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 490-495
Taking advantage of drug resistance, a new approach in the war on cancer
Liqin Wang, Rene Bernards()
Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.

Keywords cancer      drug resistance      genetic screens      senescence      targeted therapy     
Corresponding Authors: Rene Bernards   
Just Accepted Date: 21 June 2018   Online First Date: 19 July 2018    Issue Date: 03 September 2018
 Cite this article:   
Liqin Wang,Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer[J]. Front. Med., 2018, 12(4): 490-495.
Fig.1  Schematic outline of the concept of synthetic lethality. Synthetic lethality refers to a genetic principle in which the combination of two genetic perturbations is lethal, whereas each individually is not. In the example shown here, only the combination of drug A and drug B is lethal to the cell, making the combination of A and B synthetic lethal.
Fig.2  Alternative drug administration schedules. Intermittent dosing uses regular “drug holidays” in which the patient is not exposed to drug. Cancer cells that have developed resistance to a cancer drug may be at a selective disadvantage in the absence of drug, leading to a decline in the fraction of drug resistant cells in this drug holiday. This should result in increased response when the drug is given again, as the fraction of drug sensitive cells should have increased during the drug holiday.
Fig.3  A one-two punch model for cancer therapy. Pro-senescence drugs can be used to induce a stable proliferation arrest associated with the onset of senescence in cancer cells. A subsequent therapy with agents that kill senescent cells (senolytic drugs) can then be applied to selectively eradicate the senescent cancer cells. Note that the proliferating cancer cells are not sensitive to the senolytic agents, which makes a sequential (or concomitant) treatment schedule necessary.
1 Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002; 297(5578): 63–64 pmid: 12098689
2 Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 2014; 39(10): 465–474 pmid: 25239057
3 Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363(9): 809–819 pmid: 20818844
4 Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D; the METRIC Study Group. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367(2): 107–114 pmid: 22663011
5 Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, Shahheydari H, Tembe V, Thompson JF, Saw RP, Howle J, Hayward NK, Johansson P, Scolyer RA, Kefford RF, Rizos H. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun 2014; 5(1): 5694 pmid: 25452114
6 Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Maru D, Morris V, Janku F, Dasari A, Chung W, Issa JP, Gibbs P, James B, Powis G, Nolop KB, Bhattacharya S, Saltz L. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 2015; 33(34): 4032–4038 pmid: 26460303
7 Beijersbergen RL, Wessels LFA, Bernards R. Synthetic lethality in cancer therapeutics. Annu Rev Cancer Biol 2017; 1(1): 141–161
8 Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483(7387): 100–103 pmid: 22281684
9 van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens FALM, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov 2017; 7(6): 610–619 pmid: 28363909
10 Hutchison DJ. Cross resistance and collateral sensitivity studies in cancer chemotherapy. In: Haddow A, Weinhouse S, editors. Advances in Cancer Research. 7: Academic Press; 1963. 235–350
11 Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114(11): 5753–5774 pmid: 24758331
12 Imamovic L, Sommer MOA. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 2013; 5(204):204ra132
13 Seghers AC, Wilgenhof S, Lebbé C, Neyns B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res 2012; 22(6): 466–472 pmid: 22584957
14 McMahon M. Intermittent dosing in melanoma. Clin Adv Hematol Oncol 2015; 13(6): 348–350 PMID:26352888
15 Treiber N, Huber MA, Schneider LA, Scharffetter-Kochanek K, Schultz E, Debus D. Intermittent vemurafenib therapy in malignant melanoma. J Dtsch Dermatol Ges 2017; 15(4): 451–454 pmid: 28294514
16 Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM, Zecchin D, Hobor S, Bajpe PK, Lieftink C, Mateus C, Vagner S, Grernrum W, Hofland I, Schlicker A, Wessels LF, Beijersbergen RL, Bardelli A, Di Nicolantonio F, Eggermont AM, Bernards R. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508(7494): 118–122 pmid: 24670642
17 Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M, Stuart DD. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494(7436): 251–255 pmid: 23302800
18 Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463–482 pmid: 28374786
19 Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017; 551(7679): 247–250
pmid: 29088702
20 Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017; 547(7664): 453–457 pmid: 28678785
21 Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, Lauffenburger DA, Hemann MT. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 2016; 165(1): 234–246 pmid: 26924578
22 Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, Horlings H, Nuijen B, Beijnen JH, Schellens JHM, Bernards R. An acquired vulnerability of drug resistant melanoma with therapeutic potential. Cell 2018; 173(6): 1413–1425.e14 pmid: 29754815
23 Wang L, Leite de Oliveira R, Wang C, Fernandes Neto JM, Mainardi S, Evers B, Lieftink C, Morris B, Jochems F, Willemsen L, Beijersbergen RL, Bernards R. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Reports 2017; 21(3): 773–783 pmid: 29045843
24 Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482–496 pmid: 24954210
25 Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 2008; 27(46): 5975–5987 pmid: 18711403
26 Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113(6): 703–716 pmid: 12809602
27 Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493(7434): 689–693 PMID:23334421
28 Wiley CD, Campisi J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 2016; 23(6): 1013–1021 pmid: 27304503
29 Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22(1): 78–83 pmid: 26657143
30 Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15(3): 428–435 pmid: 26711051
[1] Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie. Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy[J]. Front. Med., 2018, 12(6): 667-677.
[2] Patrick A. Carroll, Brian W. Freie, Haritha Mathsyaraja, Robert N. Eisenman. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis[J]. Front. Med., 2018, 12(4): 412-425.
[3] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[4] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[5] Jiyu Tong, Richard A. Flavell, Hua-Bing Li. RNA m6A modification and its function in diseases[J]. Front. Med., 2018, 12(4): 481-489.
[6] Dalin Zhang, Liwei Qu, Bo Zhou, Guizhen Wang, Guangbiao Zhou. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas[J]. Front. Med., 2018, 12(3): 280-288.
[7] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[8] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[9] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[10] Hongbing Shen. Low-dose CT for lung cancer screening: opportunities and challenges[J]. Front. Med., 2018, 12(1): 116-121.
[11] Haican Liu, Yuanyuan Zhang, Zhiguang Liu, Jinghua Liu, Yolande Hauck, Jiao Liu, Haiyan Dong, Jie Liu, Xiuqin Zhao, Bing Lu, Yi Jiang, Gilles Vergnaud, Christine Pourcel, Kanglin Wan. Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China[J]. Front. Med., 2018, 12(1): 92-97.
[12] Yutao Liu, Yaxia Di, Shuai Fu. Risk factors for ventilator-associated pneumonia among patients undergoing major oncological surgery for head and neck cancer[J]. Front. Med., 2017, 11(2): 239-246.
[13] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[14] Yiming Ma,Ting Xiao,Quan Xu,Xinxin Shao,Hongying Wang. iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer[J]. Front. Med., 2016, 10(3): 278-285.
[15] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
Full text