Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2014, Vol. 1 Issue (2) : 130-136    https://doi.org/10.15302/J-FASE-2014013
RESEARCH ARTICLE
Expression pattern and regulation of head-to-head genes Vps36 and Ckap2 during chicken follicle development
Xinxing CUI1,Chunhong YANG1,Li KANG1,Guiyu ZHU2,Qingqing WEI1,Yunliang JIANG1,*()
1. Laboratory of Animal Molecular Genetics, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
2. Department of Biology Science and Technology, Taishan University, Taian 271021, China
 Download: PDF(214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Vacuolar protein sorting 36 (VPS36), a protein primarily known for its role in the Endosomal Sorting Complex Required for Transport pathway, has recently been shown to be linked to chicken reproduction. Previous research showed that Vps36 is significantly downregulated in sexually mature chicken ovaries compared to immature ones. In this study, using real-time quantitative RT-PCR, we investigated the expression pattern of Vps36 and its head-to-head gene Ckap2 mRNA in chicken follicles. Small white follicles were found to have significantly higher expression of Vps36 and Ckap2 mRNA than any other sized follicles (P<0.05). The expression of Vps36 and Ckap2 mRNA were detected in both granulosa and theca layers of pre-ovulatory follicles, the expression of Ckap2 in theca layers was slightly higher than in granulosa cells. Treatment of small yellow follicles with follicle-stimulating hormone and estradiol resulted in a marked decrease of both Vps36 and Ckap2 mRNA (P<0.05); however, progesterone, transforming growth factor-β 1 and luteinizing hormone induced no significant changes in Vps36 and Ckap2 mRNA expression in these follicles. These results indicate that the head-to-head genes of Vps36 and Ckap2 exhibit similar expression in chicken follicles and are involved in chicken follicle development.

Keywords chicken      Vps36      Ckap2      mRNA      follicle     
Corresponding Author(s): Yunliang JIANG   
Online First Date: 22 September 2014    Issue Date: 10 October 2014
 Cite this article:   
Xinxing CUI,Chunhong YANG,Li KANG, et al. Expression pattern and regulation of head-to-head genes Vps36 and Ckap2 during chicken follicle development[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 130-136.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2014013
https://academic.hep.com.cn/fase/EN/Y2014/V1/I2/130
PrimerGenBank accession numberSequenceProduct size/bp
Vps36SenseAntisenseXM_4170775-TTGTAAGATGCTGGAGCCG-35’-TAAGAGAACAGACATTCCCACC-3’187
Ckap2SenseAntisenseNM_0010062745′-CTGGATGCGTCTTGAACAGA-3′5′-TCTATCACAGCTCCCCCATC-3′168
β-actinSenseAntisenseNM_2055185′-TGGATGATGATATTGCTGC-3′5-ATCTTCTCCATATCATCCC-3253
Tab.1  Oligonucleotide primer sequences for real-time quantitative PCR
Fig.1  Vps36 (a) and Ckap2 (b) mRNA abundance in different sized follicles as measured by real-time quantitative RCR. The different letters above each bar indicate significant difference at P < 0.05. Data are means ± standard error of the mean (n = 4). SWF (small white follicles, 2-4 mm); SYF (small yellow follicles, 4-8 mm); F5 (12-14 mm); F3 (22-24 mm); F2 (the second largest follicle); F1 (the largest follicle).
Fig.2  Real-time quantitative PCR analysis of Vps36 and Ckap2 gene expression in granulosa and thecal layer cells of pre-ovulatory (F1, F3 and F6) follicles. Values marked with different letters differ significantly (P < 0.05). Data are means ± SEM (n = 5).
Fig.3  Effect of FSH (a) and LH (b) on mRNA expression of Vps36 and Ckap2 in chicken small yellow follicles. Values marked with different letters differ significantly (P < 0.05). Data are means ± SEM (n = 4).
Fig.4  Effects of E2 (a) and P4 (b) on mRNA expression of Vps36 and Ckap2 in chicken small yellow follicles. Values marked with different letters differ significantly (P < 0.05). Data are means ± SEM (n = 4).
Fig.5  Effect of TGFβ1 on mRNA expression of Vps36 and Ckap2 in chicken small yellow follicles. Values marked with different letters differ significantly (P < 0.05). Data are means ± SEM (n = 4).
1 Henne W M, Buchkovich N J, Emr S D. The ESCRT pathway. Developmental Cell, 2011, 21(1): 77-91
https://doi.org/10.1016/j.devcel.2011.05.015 pmid: 21763610
2 Katzmann D J, Odorizzi G, Emr S D. Receptor downregulation and multivesicular-body sorting. Nature Reviews- Molecular Cell Biology, 2002, 3(12): 893-905
https://doi.org/10.1038/nrm973 pmid: 12461556
3 Williams R L, Urbé S. The emerging shape of the ESCRT machinery. Nature Reviews-Molecular Cell Biology, 2007, 8(5): 355-368
https://doi.org/10.1038/nrm2162 pmid: 17450176
4 Babst M. A protein’s final ESCRT. Traffic, 2005, 6(1): 2-9
https://doi.org/10.1111/j.1600-0854.2004.00246.x pmid: 15569240
5 Teo H, Gill D J, Sun J, Perisic O, Veprintsev D B, Vallis Y, Emr S D, Williams R L. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell, 2006, 125(1): 99-111
https://doi.org/10.1016/j.cell.2006.01.047 pmid: 16615893
6 Alam S L, Sun J, Payne M, Welch B D, Blake B K, Davis D R, Meyer H H, Emr S D, Sundquist W I. Ubiquitin interactions of NZF zinc fingers. The EMBO Journal, 2004, 23(7): 1411-1421
https://doi.org/10.1038/sj.emboj.7600114 pmid: 15029239
7 Alam S L, Langelier C, Whitby F G, Koirala S, Robinson H, Hill C P, Sundquist W I. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Structural & Molecular Biology, 2006, 13(11): 1029-1030
https://doi.org/10.1038/nsmb1160 pmid: 17057716
8 Slagsvold T, Aasland R, Hirano S, Bache K G, Raiborg C, Trambaiolo D, Wakatsuki S, Stenmark H. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. The Journal of Biological Chemistry, 2005, 280(20): 19600-19606
https://doi.org/10.1074/jbc.M501510200 pmid: 15755741
9 Hirano S, Suzuki N, Slagsvold T, Kawasaki M, Trambaiolo D, Kato R, Stenmark H, Wakatsuki S. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Structural & Molecular Biology, 2006, 13(11): 1031-1032
https://doi.org/10.1038/nsmb1163 pmid: 17057714
10 Raymond C K, Howald-Stevenson I, Vater C A, Stevens T H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Molecular Biology of the Cell, 1992, 3(12): 1389-1402
https://doi.org/10.1091/mbc.3.12.1389 pmid: 1493335
11 Herz H M, Woodfield S E, Chen Z, Bolduc C, Bergmann A. Common and distinct genetic properties of ESCRT-II components in Drosophila. PLoS ONE, 2009, 4(1): e4165
https://doi.org/10.1371/journal.pone.0004165 pmid: 19132102
12 Irion U, St Johnston D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature, 2007, 445(7127): 554-558
https://doi.org/10.1038/nature05503 pmid: 17268469
13 Whitfield M L, Sherlock G, Saldanha A J, Murray J I, Ball C A, Alexander K E, Matese J C, Perou C M, Hurt M M, Brown P O, Botstein D. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell, 2002, 13(6): 1977-2000
https://doi.org/10.1091/mbc.02-02-0030. pmid: 12058064
14 Jeon S M, Choi B, Hong K U, Kim E, Seong Y S, Bae C D, Park J. A cytoskeleton-associated protein, TMAP/CKAP2, is involved in the proliferation of human foreskin fibroblasts. Biochemical and Biophysical Research Communications, 2006, 348(1): 222-228
https://doi.org/10.1016/j.bbrc.2006.07.046 pmid: 16876122
15 Hong K U, Park Y S, Seong Y S, Kang D, Bae C D, Park J. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis. Molecular and Cellular Biology, 2007, 27(10): 3667-3681
https://doi.org/10.1128/MCB.01386-06 pmid: 17339342
16 Eichmuller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D. Serological detection of cutaneous T-cell lymphoma-associated antigens. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 629-634
https://doi.org/10.1073/pnas.98.2.629 pmid: 11149944
17 Bae C D, Sung Y S, Jeon S M, Suh Y, Yang H K, Kim Y I, Park K H, Choi J, Ahn G, Park J. Up-regulation of cytoskeletal-associated protein 2 in primary human gastric adenocarcinomas. Journal of Cancer Research and Clinical Oncology, 2003, 129(11): 621-630
https://doi.org/10.1007/s00432-003-0484-0 pmid: 12942315
18 Jin Y, Murakumo Y, Ueno K, Hashimoto M, Watanabe T, Shimoyama Y, Ichihara M, Takahashi M. Identification of a mouse cytoskeleton-associated protein, CKAP2, with microtubule-stabilizing properties. Cancer Science, 2004, 95(10): 815-821
https://doi.org/10.1111/j.1349-7006.2004.tb02187.x pmid: 15504249
19 Johnson A L. Regulation of follicle differentiation by gonadotropins and growth factors. Poultry Science, 1993, 72(5): 867-873
https://doi.org/10.3382/ps.0720867 pmid: 8502608
20 You S, Bridgham J T, Foster D N, Johnson A L. Characterization of the chicken follicle-stimulating hormone receptor (cFSH-R) complementary deoxyribonucleic acid, and expression of cFSH-R messenger ribonucleic acid in the ovary. Biology of Reproduction, 1996, 55(5): 1055-1062
https://doi.org/10.1095/biolreprod55.5.1055 pmid: 8902217
21 Calvo F O, Bahr J M. Adenylyl cyclase system of the small preovulatory follicles of the domestic hen: responsiveness to follicle-stimulating hormone and luteinizing hormone. Biology of Reproduction, 1983, 29(3): 542-547
https://doi.org/10.1095/biolreprod29.3.542 pmid: 6414541
22 Johnson A L, Bridgham J T, Wagner B. Characterization of a chicken luteinizing hormone receptor (cLH-R) cDNA, and expression of cLH-R mRNA in the ovary. Biology of Reproduction, 1996, 55(2): 304-309
https://doi.org/10.1095/biolreprod55.2.304 pmid: 8828833
23 Johnson A L, Bridgham J T. Regulation of steroidogenic acute regulatory protein and luteinizing hormone receptor messenger ribonucleic acid in hen granulosa cells. Endocrinology, 2001, 142(7): 3116-3124
pmid: 11416034
24 Kang L, Zhang Y, Zhang N, Zang L, Wang M, Cui X, Jiang Y. Identification of differentially expressed genes in ovaries of chicken attaining sexual maturity at different ages. Molecular Biology Reports, 2012, 39(3): 3037-3045
https://doi.org/10.1007/s11033-011-1066-x pmid: 21691707
25 Gilbert A B, Evans A J, Perry M M, Davidson M H. A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). Journal of Reproduction and Fertility, 1977, 50(1): 179-181
https://doi.org/10.1530/jrf.0.0500179 pmid: 864645
26 Diaz F J, Anthony K, Halfhill A N. Early avian follicular development is characterized by changes in transcripts involved in steroidogenesis, paracrine signaling and transcription. Molecular Reproduction and Development, 2011, 78(3): 212-223
https://doi.org/10.1002/mrd.21288 pmid: 21308853
27 Jia Y D, Yan F F, Zeng W D, Zhang C Q. Promoting effect of IGF-I on prehierarchical follicle development in laying chickens. China Scientia Agriculture Sinica, 2011, 44(20): 4295-4301 (in Chinese)
28 Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408
https://doi.org/10.1006/meth.2001.1262 pmid: 11846609
29 Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009, 458(7237): 445-452
https://doi.org/10.1038/nature07961 pmid: 19325624
30 Li Y Y, Yu H, Guo Z M, Guo T Q, Tu K, Li Y X. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Computational Biology, 2006, 2(7): e74
https://doi.org/10.1371/journal.pcbi.0020074 pmid: 16839196
31 Amsterdam A, Selvaraj N. Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocrine Reviews, 1997, 18(4): 435-461
pmid: 9267759
32 Richards J S. New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Molecular Endocrinology, 2001, 15(2): 209-218
pmid: 11158328
33 Morohashi K I, Omura T. Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. The FASEB Journal, 1996, 10(14): 1569-1577
pmid: 9002548
34 Omura T, Morohashi K. Gene regulation of steroidogenesis. The Journal of Steroid Biochemistry and Molecular Biology, 1995, 53(1-6): 19-25
https://doi.org/10.1016/0960-0760(95)00036-Y pmid: 7626452
35 Amsterdam A, Rotmensch S. Structure-function relationships during granulosa cell differentiation. Endocrine Reviews, 1987, 8(3): 309-337
https://doi.org/10.1210/edrv-8-3-309 pmid: 2820706
36 Hunzicker-Dunn M, Maizels E T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cellular Signalling, 2006, 18(9): 1351-1359
https://doi.org/10.1016/j.cellsig.2006.02.011 pmid: 16616457
37 DeManno D A, Cottom J E, Kline M P, Peters C A, Maizels E T, Hunzicker-Dunn M. Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Molecular Endocrinology, 1999, 13(1): 91-105
https://doi.org/10.1210/mend.13.1.0222 pmid: 9892015
38 Hagiwara M, Brindle P, Harootunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy M R. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Molecular and Cellular Biology, 1993, 13(8): 4852-4859
pmid: 8336722
39 Mukherjee A, Park-Sarge O K, Mayo K E. Gonadotropins induce rapid phosphorylation of the 3′,5′-cyclic adenosine monophosphate response element binding protein in ovarian granulosa cells. Endocrinology, 1996, 137(8): 3234-3245
pmid: 8754745
40 Moggs J G, Orphanides G. Estrogen receptors: orchestrators of pleiotropic cellular responses. EMBO Reports, 2001, 2(9): 775-781
https://doi.org/10.1093/embo-reports/kve185 pmid: 11559590
[1] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[2] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
[3] Xunhe HUANG,Jinfeng ZHANG,Danlin HE,Xiquan ZHANG,Fusheng ZHONG,Weina LI,Qingmei ZHENG,Jiebo CHEN,Bingwang DU. Genetic diversity and population structure of indigenous chicken breeds in South China[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 97-101.
[4] Wanbao YANG,Qinqun LI,Bo SU,Mei YU. MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 72-80.
[5] Xue XU,Jiannan ZHANG,Juan LI,Yajun WANG. Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b) in chickens[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 73-83.
[6] Ming TIAN,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Rui HAO,Xiaoxiang HU,Ning LI. Inverted duplication including Endothelin 3 closely related to dermal hyperpigmentation in Silkie chickens[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed