Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (1) : 73-83    https://doi.org/10.15302/J-FASE-2015044
RESEARCH ARTICLE
Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b) in chickens
Xue XU,Jiannan ZHANG,Juan LI,Yajun WANG()
Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
 Download: PDF(1273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Suppressor of cytokine signaling 1 (SOCS1) protein can inhibit the signal transduction triggered by some cytokines or hormones and thus are important in many physiological/pathological processes, including innate and adaptive immunity, inflammation, and development in mammals. However, there is sparse information about their structure, tissue expression, in birds, where their biological functions remain unknown. In this study, we cloned and characterized two SOCS1 genes (named cSOCS1a and cSOCS1b) from chickens. SOCS1a is predicted to encode a 207-amino acid protein, which shares high amino acid sequence identity (64%–67%) with human and mouse SOCS1. Besides SOCS1a, a novel SOCS1b gene was also identified in chickens and other non-mammalian vertebrates including Xenopus tropicalis. Chicken SOCS1b is predicted to encode a 212-amino acid protein, which shares only 30%–32% amino acid sequence identity with human SOCS1 and cSOCS1a. RT-PCR assay revealed that both cSOCS1a and cSOCS1b are widely expressed in all chicken tissues. Using a luciferase reporter assay system, we further demonstrated that transient expression of cSOCS1a and cSOCS1b can significantly inhibit chicken growth hormone (GH)- or prolactin (PRL)-induced luciferase activities of Hep G2 cells expressing cGH receptor (or cPRL receptor), indicating that SOCS1a and SOCS1b proteins can negatively regulate GH/PRL signaling. Taken together, these data suggest that both cSOCS1a and cSOCS1b may function as negative regulators of cytokine/hormone actions, such as modulation of GH/PRL actions in chickens.

Keywords chicken      SOCS1a      SOCS1b      growth hormone      prolactin     
Corresponding Author(s): Yajun WANG   
Just Accepted Date: 16 March 2015   Online First Date: 24 April 2015    Issue Date: 22 May 2015
 Cite this article:   
Xue XU,Jiannan ZHANG,Juan LI, et al. Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b) in chickens[J]. Front. Agr. Sci. Eng. , 2015, 2(1): 73-83.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015044
https://academic.hep.com.cn/fase/EN/Y2015/V2/I1/73
Primers Sense/Antisense Primer sequence (5′ to 3′) Size/bp
Primers for rapid amplification of 5′-ends (5′-RACE)
cSOCS1a-L1 Antisense TCCAGCAGGCTGCTTGCTCGAGTGA
cSOCS1a-L2 Antisense CTTCTGCGTGCTGTCCCTGATGAGGA
cSOCS1b-L1 Antisense AGCTGTCCCGCACCAGGTAGGTGCCA
cSOCS1b-L1 Antisense AGTCGGCATCCGCACGCTCAGGCTGA
Primers for constructing the expression plasmidsb
cSOCS1a Sense CGGGGTACCGCTGGCCTAGGCTGTAGGAT 701
Antisense CGGGAATTCACACATCTCTCACATGTCTCT
cSOCS1b Sense CGGGGTACCGGGATCCATGGGCTCTTTGA 724
Antisense CGGGAATTCTCCAGCATGGCTGTGTGCAT
cGHR Sense CGGGGTACCTGCTGACATTTGAGAAT 1868
Antisense CCGCTCGAGAATTGCTACGGCATGAT
cPRLR Sense CGGGGTACCAAGAGGAAGTGGAAATCATGA 2556
Antisense CCGGAATTCTGTAGCATTACCTGATGAAGAG
Primers for RT-PCR assays
cSOCS1a Sense GCTGGCCTAGGCTGTAGGAT 688
Antisense ACACATCTCTCACATGTCTCT
cSOCS1b Sense GGGATCCATGGGCTCTTTGA 710
Antisense TCCAGCATGGCTGTGTGCAT
β-actin Sense TGTGCTACGTCGCACTGGAT 401
Antisense GCTGATCCACATCTGCTGGA
Tab.1  Primers used in this studya
Fig.1  Amino acid sequence alignment of SOCS1 proteins from chicken and other species. (a) Alignment of chicken SOCS1a (Ch-SOCS1a, XM_414929) with SOCS1a (or SOCS1) from duck (Du-SOCS1a: XP_005027549), human (Hu-SOCS1), mouse (Mo-SOCS1), pig (Pi-SOCS1), alligator (Al-SOCS1a), Xenopus tropicalis (Xe-SOCS1a), coelacanth (Co-SOCS1a) and zebrafish (zf-SOCS1a1, NM_001003467; zf-SOCS1a2, JN800507); (b) alignment of chicken SOCS1b (Ch-SOCS1b, HQ917699) with that of zebra finch (Fi-SOCS1b), falcon (Fa-SOCS1b), pigeon (Po-SOCS1b), penguin (Pe-SOCS1b), alligator (Al-SOCS1b), Xenopus tropicalis (Xe-SOCS1b), coelacanth (Co-SOCS1b), or with that of chicken SOCS1a (Ch-SOCS1a) or human SOCS1 (Hu-SOCS1). Dots indicate the amino acid residues identical to chicken SOCS1a and dashes represent gaps in the alignment. The conversed SH2 domain, and SOCS box are shaded; the kinase inhibitory domain (KIR) is shaded and shown in bold; the Extended SH2 domain (ESS) is bold and underlined; the BC box is shaded and boxed. The amino acid sequences of SOCS1a or SOCS1b genes from other species were either retrieved from GenBank or predicted according to genomic sequences.
Fig.2  Gene structure (a) and tissue expression (b) of chicken SOCS1a and SOCS1b. (a) Exon (E) organization of cSOCS1a and cSOCS1b genes. The coding regions of cSOCS1a and cSOCS1b are intronless and shaded. cSOCS1a contains one non-coding exon (Exon 1, 25 bp) upstream of the translation start site (ATG), while cSOCS1b contains two non-coding exons (Exon 1, 67 bp; Exon 2, 121 bp) upstream of ATG codon. The numbers in the boxes indicate the size of non-coding or coding regions (shaded), and the number in italics indicates the size of the intron; (b) RT-PCR detection of cSOCS1a and cSOCS1b mRNA expression in adult chicken tissues, including the brain (Br), heart (He), small intestine (In), kidneys (Ki), liver (Li), lung (Lu), muscle (Mu), ovary (Ov), testes (Te), pituitary (Pi), and spleen (Sp). No PCR band was detected in the negative controls (-). Numbers in parenthesis indicate the PCR cycles used.
Fig.3  Synteny analyses showing the existence of SOCS1a (a) and SOCS1b (b) in non-mammalian vertebrates. (a) SOCS1a gene is located in a syntenic region conserved between chickens, humans, Xenopus tropicalis and zebrafish. The two copies of SOCS1a (SOCS1a1, NM_001003467; SOCS1a2, JN800507) genes in zebrafish are likely to be paralogs generated by the teleost-specific whole genome duplication (WGD) event; (b) SOCS1b gene is located in a syntenic region conserved between chickens and Xenopus tropicalis. SOCS1b gene is likely lost in zebrafish and human genomes. Dashed lines denote the genes of interest (SOCS1a or SOCS1b), while dotted lines indicate the syntenic genes identified in these species. Genes were labeled according to their gene symbols in the human genome. Gray bars appeared in (b) indicate the SOCS1b gene likely lost in these species. SOCS1a gene identified in chickens, Xenopus tropicalis, and zebrafish is orthogous to mammalian (human) SOCS1 gene. Chr, chromosome; WGD, teleost-specific whole genome duplication.
Fig.4  Inhibition of GH/PRL signaling by cSOCS1a (a, c) and cSOCS1b (b, d). (a, b) transient expression of cSOCS1a or cSOCS1b inhibits cGH-induced (200 ng·mL–1, 18 h) luciferase activities of Hep G2 cells expressing chicken GH receptor, monitored by a 5 × STAT luciferase reporter system; (c, d) transient expression of (b,d) transient expression of cSOCS1a or cSOCS1b inhibits cPRL-induced (200 ng·mL–1, 18 h) luciferase activities of Hep G2 cells expressing chicken PRL receptor, monitored by a 5 × STAT luciferase reporter system; The luciferase activity of Hep G2 cells in each treatment group was expressed as relative increase compared to the control group (without hormone treatment). Each data point represents mean±SEM of three replicates. **, P<0.001 vs control (without hormone treatment); #, P<0.01; ##, P<0.001 vs hormone treatment group (without SOCS1a/SOCS1b added).
Fig.5  Phylogenetic tree (constructed by Neighboring-Joining method) showing the evolutionary relationship of SOCS1a, SOCS1b, SOCS3, SOCS2 and CIS genes from non-mammalian and/or mammalian vertebrates. Numbers near each branch point indicate the bootstrap values. The amino acid sequences of all SOCS or CIS genes were either retrieved from GenBank or predicted according to genomic sequences.
1 Krebs D L, Hilton D J. SOCS: physiological suppressors of cytokine signaling. Journal of Cell Science, 2000, 113(Pt 16): 2813-2819
pmid: 10910765
2 Alexander W S. Suppressors of cytokine signalling (SOCS) in the immune system. Nature Reviews Immunology, 2002, 2(6): 410-416
pmid: 12093007
3 Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T. Structure and function of a new STAT-induced STAT inhibitor. Nature, 1997, 387(6636): 924-929
https://doi.org/10.1038/43219 pmid: 9202127
4 Endo T A, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A. A new protein containing an SH2 domain that inhibits JAK kinases. Nature, 1997, 387(6636): 921-924
https://doi.org/10.1038/43213 pmid: 9202126
5 Starr R, Willson T A, Viney E M, Murray L J, Rayner J R, Jenkins B J, Gonda T J, Alexander W S, Metcalf D, Nicola N A, Hilton D J. A family of cytokine-inducible inhibitors of signalling. Nature, 1997, 387(6636): 917-921
https://doi.org/10.1038/43206 pmid: 9202125
6 Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, Ohtsuka S, Imaizumi T, Matsuda T, Ihle J N, Yoshimura A. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO Journal, 1999, 18(5): 1309-1320
https://doi.org/10.1093/emboj/18.5.1309 pmid: 10064597
7 Nicholson S E, Hilton D J. The SOCS proteins: a new family of negative regulators of signal transduction. Journal of Leukocyte Biology, 1998, 63(6): 665-668
pmid: 9620657
8 Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 114-119
https://doi.org/10.1073/pnas.95.1.114 pmid: 9419338
9 Zhang J G, Metcalf D, Rakar S, Asimakis M, Greenhalgh C J, Willson T A, Starr R, Nicholson S E, Carter W, Alexander W S, Hilton D J, Nicola N A. The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 13261-13265
https://doi.org/10.1073/pnas.231486498 pmid: 11606785
10 Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway R C, Conaway J W, Nakayama K I. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes & Development, 2004, 18(24): 3055-3065
https://doi.org/10.1101/gad.1252404 pmid: 15601820
11 Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nature Reviews Immunology, 2007, 7(6): 454-465
https://doi.org/10.1038/nri2093 pmid: 17525754
12 Marine J C, Topham D J, McKay C, Wang D, Parganas E, Stravopodis D, Yoshimura A, Ihle J N. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell, 1999, 98(5): 609-616
https://doi.org/10.1016/S0092-8674(00)80048-3 pmid: 10490100
13 Naka T, Matsumoto T, Narazaki M, Fujimoto M, Morita Y, Ohsawa Y, Saito H, Nagasawa T, Uchiyama Y, Kishimoto T. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15577-15582
https://doi.org/10.1073/pnas.95.26.15577 pmid: 9861011
14 Starr R, Metcalf D, Elefanty A G, Brysha M, Willson T A, Nicola N A, Hilton D J, Alexander W S. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24): 14395-14399
https://doi.org/10.1073/pnas.95.24.14395 pmid: 9826711
15 Hansen J A, Lindberg K, Hilton D J, Nielsen J H, Billestrup N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Molecular Endocrinology, 1999, 13(11): 1832-1843
https://doi.org/10.1210/mend.13.11.0368 pmid: 10551777
16 Pezet A, Favre H, Kelly P A, Edery M. Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. The Journal of Biological Chemistry, 1999, 274(35): 24497-24502
https://doi.org/10.1074/jbc.274.35.24497 pmid: 10455112
17 Huang G, He C, Meng F, Li J, Zhang J, Wang Y. Glucagon-like peptide (GCGL) is a novel potential TSH-releasing factor (TRF) in Chickens: I) Evidence for its potent and specific action on stimulating TSH mRNA expression and secretion in the pituitary. Endocrinology, 2014, 155(11): 4568-4580
https://doi.org/10.1210/en.2014-1331 pmid: 25076122
18 Jin H J, Xiang L X, Shao J Z. Identification and characterization of suppressor of cytokine signaling 1 (SOCS-1) homologues in teleost fish. Immunogenetics, 2007, 59(8): 673-686
https://doi.org/10.1007/s00251-007-0232-8 pmid: 17569039
19 Jin H J, Shao J Z, Xiang L X, Wang H, Sun L L. Global identification and comparative analysis of SOCS genes in fish: insights into the molecular evolution of SOCS family. Molecular Immunology, 2008, 45(5): 1258-1268
https://doi.org/10.1016/j.molimm.2007.09.015 pmid: 18029016
20 Nie L, Xiong R, Zhang Y S, Zhu L Y, Shao J Z, Xiang L X. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. Developmental and Comparative Immunology, 2014, 43(1): 23-29
https://doi.org/10.1016/j.dci.2013.10.007 pmid: 24183820
21 Skjesol A, Liebe T, Iliev D B, Thomassen E I, Tollersrud L G, Sobhkhez M, Lindenskov Joensen L, Secombes C J, J?rgensen J B. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling. Developmental and Comparative Immunology, 2014, 45(1): 177-189
https://doi.org/10.1016/j.dci.2014.02.009 pmid: 24582990
22 Bu G, Ying Wang C, Cai G, Leung F C, Xu M, Wang H, Huang G, Li J, Wang Y. Molecular characterization of prolactin receptor (cPRLR) gene in chickens: gene structure, tissue expression, promoter analysis, and its interaction with chicken prolactin (cPRL) and prolactin-like protein (cPRL-L). Molecular and Cellular Endocrinology, 2013, 370(1-2): 149-162
https://doi.org/10.1016/j.mce.2013.03.001 pmid: 23499864
23 Cocolakis E, Dai M, Drevet L, Ho J, Haines E, Ali S, Lebrun J J. Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. The Journal of Biological Chemistry, 2008, 283(3): 1293-1307
https://doi.org/10.1074/jbc.M707492200 pmid: 18024957
24 Bu G, Huang G, Fu H, Li J, Huang S, Wang Y. Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens. Journal of Molecular Endocrinology, 2013, 51(2): 261-276
https://doi.org/10.1530/JME-13-0068 pmid: 23940279
25 Frantsve J, Schwaller J, Sternberg D W, Kutok J, Gilliland D G. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Molecular and Cellular Biology, 2001, 21(10): 3547-3557
https://doi.org/10.1128/MCB.21.10.3547-3557.2001 pmid: 11313480
26 Waiboci L W, Ahmed C M, Mujtaba M G, Flowers L O, Martin J P, Haider M I, Johnson H M. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. Journal of Immunology, 2007, 178(8): 5058-5068
https://doi.org/10.4049/jimmunol.178.8.5058 pmid: 17404288
27 Bullock A N, Debreczeni J E, Edwards A M, Sundstr?m M, Knapp S. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(20): 7637-7642
https://doi.org/10.1073/pnas.0601638103 pmid: 16675548
28 Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10(10): 725-732
https://doi.org/10.1038/nrg2600 pmid: 19652647
29 Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2005, 27(9): 937-45
30 Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocrine Reviews, 1998, 19(3): 225-268
https://doi.org/10.1210/edrv.19.3.0334 pmid: 9626554
31 Harvey S, Gineste C, Gaylinn B D. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens. General and Comparative Endocrinology, 2014, 204: 261-266
https://doi.org/10.1016/j.ygcen.2014.06.007 pmid: 24955880
32 Studzinski A L, Almeida D V, Lanes C F, Figueiredo M A, Marins L F. SOCS1 and SOCS3 are the main negative modulators of the somatotrophic axis in liver of homozygous GH-transgenic zebrafish (Danio rerio). General and Comparative Endocrinology, 2009, 161(1): 67-72
https://doi.org/10.1016/j.ygcen.2008.10.008 pmid: 18955058
[1] Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO. Livestock breeding for the 21st century: the promise of the editing revolution[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 129-135.
[2] Wen LUO, Bahareldin A. ABDALLA, Qinghua NIE, Xiquan ZHANG. The genetic regulation of skeletal muscle development: insights from chicken studies[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 295-304.
[3] Xunhe HUANG,Jinfeng ZHANG,Danlin HE,Xiquan ZHANG,Fusheng ZHONG,Weina LI,Qingmei ZHENG,Jiebo CHEN,Bingwang DU. Genetic diversity and population structure of indigenous chicken breeds in South China[J]. Front. Agr. Sci. Eng. , 2016, 3(2): 97-101.
[4] Xinxing CUI,Chunhong YANG,Li KANG,Guiyu ZHU,Qingqing WEI,Yunliang JIANG. Expression pattern and regulation of head-to-head genes Vps36 and Ckap2 during chicken follicle development[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 130-136.
[5] Ming TIAN,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Rui HAO,Xiaoxiang HU,Ning LI. Inverted duplication including Endothelin 3 closely related to dermal hyperpigmentation in Silkie chickens[J]. Front. Agr. Sci. Eng. , 2014, 1(2): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed