Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2015, Vol. 2 Issue (2) : 101-114    https://doi.org/10.15302/J-FASE-2015068
REVIEW
New insights in the battle between wheat and Puccinia striiformis
Chunlei TANG,Xiaojie WANG,Yulin CHENG,Minjie LIU,Mengxin ZHAO,Jinping WEI,Zhensheng KANG()
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
 Download: PDF(215 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) poses a great threat to wheat production worldwide. The rapid change in virulence of Pst leads to a loss of resistance in currently resistant wheat cultivars, which results in frequent disease epidemics. Therefore, a major focus is currently placed on investigating the molecular mechanisms underlying this rapid variation of pathogenicity and coevolving wheat resistance. Limited by the lack of a system for stable transformation of Pst and the difficulties in wheat transformation, it is not easy to generate deeper insights into the wheat-Pst interaction using established genetic methods. Nevertheless, considerable effort has been made to unravel the wheat-Pst interaction and significant progress is being made. Histology and cytology have revealed basic details of infection strategies and defense responses during wheat-Pst interactions, identified cellular components involved in wheat-Pst interactions, and have helped to elucidate their role in the infection process or in plant defense responses. Transcriptome and genome sequencing has revealed the molecular features and dynamics of the wheat-Pst pathosystem. Extensive molecular analyses have led to the identification of major components in the wheat resistance response and in Pst virulence. Studies of wheat-Pst interactions have now entered a new phase in which cellular and molecular approaches are being used. This review focuses on the cellular biology of wheat-Pst interactions and integrates the emerging data from molecular analyses with the histocytological observations.

Keywords wheat      strip rust      Puccinia striiformis f. sp. tritici      host defense      pathogen virulence      biotrophic fungus     
Corresponding Author(s): Zhensheng KANG   
Just Accepted Date: 31 August 2015   Online First Date: 11 September 2015    Issue Date: 25 September 2015
 Cite this article:   
Chunlei TANG,Xiaojie WANG,Yulin CHENG, et al. New insights in the battle between wheat and Puccinia striiformis[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 101-114.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2015068
https://academic.hep.com.cn/fase/EN/Y2015/V2/I2/101
1 Chen X. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 2005, 27(3): 314–337
https://doi.org/10.1080/07060660509507230
2 Saari EE, Prescott J. World distribution in relation to economic losses. The Cereal Rusts, 1985, 2(1): 259–298
3 Chen W, Wu L, Liu T, Xu S, Jin S, Peng Y, Wang B. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 2009, 93(11): 1093–1101
https://doi.org/10.1094/PDIS-93-11-1093
4 Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444(7117): 323–329
https://doi.org/10.1038/nature05286 pmid: 17108957
5 Jin Y, Szabo L J, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 2010, 100(5): 432–435
https://doi.org/10.1094/PHYTO-100-5-0432 pmid: 20373963
6 Zhao J, Wang L, Wang Z, Chen X, Zhang H, Yao J, Zhan G, Chen W, Huang L, Kang Z. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 2013, 103(9): 927–934
https://doi.org/10.1094/PHYTO-09-12-0249-R pmid: 23514262
7 Kang Z, Li Z, Shang H, Chong J, Rohringer R. Ultrastructure of haustorial mother cell of wheat stripe rust. Acta Mycologica Sinica, 1993, 13(3): 206–210 (in Chinese)
8 Voegele R T, Mendgen K. Rust haustoria: nutrient uptake and beyond. New Phytologist, 2003, 159(1): 93–100
https://doi.org/10.1046/j.1469-8137.2003.00761.x
9 Zhang H, Han Q, Wang C, Huang L, Zhang Q, Kang Z. Histology and ultrastructure of resistant mechanism of a new wheat material—Yilipu to Puccinia striiformis. Acta Phytopathologica Sinica, 2008, 38(2): 153–164 (in Chinese)
10 Kang Z, Huang L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. Journal of Plant Diseases and Protection, 2002, 109(1): 25–37
11 Zhang H, Wang C, Cheng Y, Chen X, Han Q, Huang L, Wei G, Kang Z. Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Reports, 2012, 31(12): 2121–2137
https://doi.org/10.1007/s00299-012-1322-0 pmid: 22833277
12 Mysore K S, Ryu C M. Nonhost resistance: how much do we know? Trends in Plant Science, 2004, 9(2): 97–104
https://doi.org/10.1016/j.tplants.2003.12.005 pmid: 15102376
13 Cheng Y, Zhang H, Yao J, Wang X, Xu J, Han Q, Wei G, Huang L, Kang Z. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biology, 2012, 12(1): 96
https://doi.org/10.1186/1471-2229-12-96 pmid: 22716957
14 Cheng Y, Zhang H, Yao J, Han Q, Wang X, Huang L, Kang Z. Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust. Plant Physiology and Biochemistry, 2013, 62: 11–18
https://doi.org/10.1016/j.plaphy.2012.10.014 pmid: 23159487
15 Yang Y, Zhao J, Xing H, Wang J, Zhou K, Zhan G, Zhang H, Kang Z. Different non-host resistance responses of two rice subspecies, japonica and indica, to Puccinia striiformis f. sp. tritici. Plant Cell Reports, 2014, 33(3): 423–433
https://doi.org/10.1007/s00299-013-1542-y pmid: 24306352
16 Kang Z, Huang L, Buchenauer H. Subcellular localization of chitinase and β-1, 3-glucanase in compatible and incompatible interactions between wheat and Puccinia striiformis f. sp. tritici. Journal of Plant Diseases and Protection, 2003, 110(2): 170–183
17 Kang Z, Wang Y, Huang L, Wei G, Zhao J. Histology and ultrastructure of incompatible combination between Puccinia striiformis and wheat cultivars with resistance of low reaction type. Scientia Agricultura Sinica, 2003, 36(9): 1026–1031 (in Chinese)
18 Wang C F, Huang L L, Buchenauer H, Han Q M, Zhang H C, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat: Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 2007, 71(4–6): 230–239
https://doi.org/10.1016/j.pmpp.2008.02.006
19 Ma J, Huang X, Wang X, Chen X, Qu Z, Huang L, Kang Z. Identification of expressed genes during compatible interaction between stripe rust (Puccinia striiformis) and wheat using a cDNA library. BMC Genomics, 2009, 10(1): 586
https://doi.org/10.1186/1471-2164-10-586 pmid: 19995415
20 Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10(1): 9
https://doi.org/10.1186/1471-2229-10-9 pmid: 20067621
21 Wang X, Tang C, Zhang G, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics, 2009, 10(1): 289
https://doi.org/10.1186/1471-2164-10-289 pmid: 19566949
22 Moldenhauer J, Pretorius Z A, Moerschbacher B M, Prins R, Van Der Westhuizen A J. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Molecular Plant Pathology, 2008, 9(2): 137–145
https://doi.org/10.1111/j.1364-3703.2007.00449.x pmid: 18705847
23 Coram T E, Settles M L, Chen X. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Molecular Plant Pathology, 2008, 9(4): 479–493
https://doi.org/10.1111/j.1364-3703.2008.00476.x pmid: 18705862
24 Huang X, Yu X, Qu Z, Wang X, Han Q, Huang L, Kang Z. Construction of suppression subtractive hybridization cDNA library of wheat adult plant resistance to stripe rust and analysis of its expressed sequence tags. Journal of Agricultural Biotechnology, 2007, 15(6): 976–981 (in Chinese)
25 Xu L, Jia J, Lv J, Liang X, Han D, Huang L, Kang Z. Characterization of the expression profile of a wheat aci-reductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses. Plant Physiology and Biochemistry, 2010, 48(6): 461–468
https://doi.org/10.1016/j.plaphy.2010.03.002 pmid: 20381366
26 Yu X, Wang X, Huang X, Buchenauer H, Han Q, Guo J, Zhao J, Qu Z, Huang L, Kang Z. Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Molecular Biology Reports, 2011, 38(5): 3447–3454
https://doi.org/10.1007/s11033-010-0454-y pmid: 21088901
27 Duan Y H, Guo J, Wang S J, Yu X M, Huang L L, Kang A S. Cloning and expression analysis of alanine aminotransferase gene TaAlaAT1 in wheat infected with stripe rust fungus. Acta Phytopathologica Sinica, 2009, 39(2): 139–146 (in Chinese)
28 Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 2005, 138(4): 2165–2173
https://doi.org/10.1104/pp.105.061861 pmid: 16024691
29 Nandi A, Welti R, Shah J. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell, 2004, 16(2): 465–477
https://doi.org/10.1105/tpc.016907 pmid: 14729910
30 Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang Z. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS ONE, 2013, 8(11): e81756
https://doi.org/10.1371/journal.pone.0081756 pmid: 24312351
31 Tang C, Wang X, Duan X, Wang X, Huang L, Kang Z. Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis. Journal of Experimental Botany, 2013, 64(10): 2955–2969
https://doi.org/10.1093/jxb/ert135 pmid: 23811695
32 Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L, Kang Z. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiology and Biochemistry, 2014, 76: 7–16
https://doi.org/10.1016/j.plaphy.2013.12.015 pmid: 24448320
33 Wang X, Tang C, Deng L, Cai G, Liu X, Liu B, Han Q, Buchenauer H, Wei G, Han D, Huang L, Kang Z. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum, 2010, 139(1): 27–38
https://doi.org/10.1111/j.1399-3054.2009.01338.x pmid: 20059734
34 Liu B, Xue X, Cui S, Zhang X, Han Q, Zhu L, Liang X, Wang X, Huang L, Chen X, Kang Z. Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Molecular Biology Reports, 2010, 37(2): 1045–1052
https://doi.org/10.1007/s11033-009-9823-9 pmid: 19757158
35 Zhang G, Li Y M, Zhang Y, Dong Y L, Wang X J, Wei G R, Huang L L, Kang Z S. Cloning and characterization of a pathogenesis-related protein gene TaPR10 from wheat induced by stripe rust pathogen. Agricultural Sciences in China, 2010, 9(4): 549–556  (in Chinese)
https://doi.org/10.1016/S1671-2927(09)60128-0
36 Chandok M R, Ytterberg A J, van Wijk K J, Klessig D F. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell, 2003, 113(4): 469–482
https://doi.org/10.1016/S0092-8674(03)00350-7 pmid: 12757708
37 Duan Y, Guo J, Shi X, Guan X, Liu F, Bai P, Huang L, Kang Z. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Reports, 2013, 32(2): 273–283
https://doi.org/10.1007/s00299-012-1361-6 pmid: 23111787
38 Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. Journal of Experimental Botany, 2012, 63(12): 4571–4584
https://doi.org/10.1093/jxb/ers140 pmid: 22696283
39 Wang X, Tang C, Zhang H, Xu J R, Liu B, Lv J, Han D, Huang L, Kang Z. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. Molecular Plant-Microbe Interactions, 2011, 24(1): 79–90
https://doi.org/10.1094/MPMI-06-10-0131 pmid: 20795855
40 Abou-Attia M A, Wang X, Al-Attala M N, Xu Q, Zhan G, Kang Z. TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat-stripe rust fungus interaction. Physiologia Plantarum, 2015
41 Rahman M. Biochemical analysis of type II Metacaspase (mcII-Pa). Dissertation for the Master Degree. Sweden: Uppsala Universitys 2010
42 Wang X, Wang X, Feng H, Tang C, Bai P, Wei G, Huang L, Kang Z. TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici. Molecular Plant-Microbe Interactions, 2012, 25(6): 755–764
https://doi.org/10.1094/MPMI-11-11-0283-R pmid: 22352715
43 Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Molecular Plant-Microbe Interactions, 2006, 19(3): 270–279
https://doi.org/10.1094/MPMI-19-0270 pmid: 16570657
44 Fu Y, Duan X, Tang C, Li X, Voegele R T, Wang X, Wei G, Kang Z. TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant Journal, 2014, 78(1): 16–30
https://doi.org/10.1111/tpj.12457 pmid: 24635700
45 Lorrain S, Vailleau F, Balagué C, Roby D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 2003, 8(6): 263–271
https://doi.org/10.1016/S1360-1385(03)00108-0 pmid: 12818660
46 Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z. Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiology and Biochemistry, 2013, 71: 164–172
https://doi.org/10.1016/j.plaphy.2013.07.009 pmid: 23933226
47 Gray J, Janick-Buckner D, Buckner B, Close P S, Johal G S. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiology, 2002, 130(4): 1894–1907
https://doi.org/10.1104/pp.008441 pmid: 12481072
48 Kruijt M, DE Kock M J, de Wit P J. Receptor-like proteins involved in plant disease resistance. Molecular Plant Pathology, 2005, 6(1): 85–97
https://doi.org/10.1111/j.1364-3703.2004.00264.x pmid: 20565641
49 Wang G, Ellendorff U, Kemp B, Mansfield J W, Forsyth A, Mitchell K, Bastas K, Liu C M, Woods-T?r A, Zipfel C, de Wit P J, Jones J D, T?r M, Thomma B P. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiology, 2008, 147(2): 503–517
https://doi.org/10.1104/pp.108.119487 pmid: 18434605
50 Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D, Zhang X. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. The Plant Journal, 2007, 52(3): 420–434
https://doi.org/10.1111/j.1365-313X.2007.03246.x pmid: 17764502
51 Jiang Z, Ge S, Xing L, Han D, Kang Z, Zhang G, Wang X, Wang X, Chen P, Cao A. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. Journal of Experimental Botany, 2013, 64(12): 3735–3746
https://doi.org/10.1093/jxb/ert206 pmid: 23881396
52 Hubert D A, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl J L. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. The EMBO Journal, 2003, 22(21): 5679–5689
https://doi.org/10.1093/emboj/cdg547 pmid: 14592967
53 Bot?r M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell, 2007, 19(11): 3791–3804
https://doi.org/10.1105/tpc.107.050427 pmid: 18032631
54 Wang G F, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen Q H, Wang D, Zhang X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191(2): 418–431
https://doi.org/10.1111/j.1469-8137.2011.03715.x pmid: 21488877
55 Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jürgens G. Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. Journal of Cell Biology, 2001, 155(2): 239–249
https://doi.org/10.1083/jcb.200107126 pmid: 11591731
56 Inada N, Ueda T. Membrane trafficking pathways and their roles in plant-microbe interactions. Plant & Cell Physiology, 2014, 55(4): 672–686
https://doi.org/10.1093/pcp/pcu046 pmid: 24616268
57 El Kasmi F, Krause C, Hiller U, Stierhof Y D, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot A A, Jürgens G. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Molecular Biology of the Cell, 2013, 24(10): 1593–1601
https://doi.org/10.1091/mbc.E13-02-0074 pmid: 23515225
58 Wang X, Wang X, Deng L, Chang H, Dubcovsky J, Feng H, Han Q, Huang L, Kang Z. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). Journal of Experimental Botany, 2014, 65(17): 4807–4820
https://doi.org/10.1093/jxb/eru241 pmid: 24963004
59 Feng H, Wang X, Sun Y, Wang X, Chen X, Guo J, Duan Y, Huang L, Kang Z. Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Molecular Biology Reports, 2011, 38(6): 3857–3866
https://doi.org/10.1007/s11033-010-0501-8 pmid: 21110112
60 Zhang G, Sun Y, Li Y, Dong Y, Huang X, Yu Y, Wang J, Wang X, Wang X, Kang Z. Characterization of a wheat C2 domain protein encoding gene regulated by stripe rust and abiotic stresses. Biologia Plantarum, 2013, 57(4): 701–710
https://doi.org/10.1007/s10535-013-0330-4
61 Edinger A L, Cinalli R M, Thompson C B. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Developmental Cell, 2003, 5(4): 571–582
https://doi.org/10.1016/S1534-5807(03)00291-0 pmid: 14536059
62 Kwon S I, Cho H J, Bae K, Jung J H, Jin H C, Park O K. Role of an Arabidopsis Rab GTPase RabG3b in pathogen response and leaf senescence. Journal of Plant Biology, 2009, 52(2): 79–87
https://doi.org/10.1007/s12374-009-9011-4
63 Liu F, Guo J, Bai P, Duan Y, Wang X, Cheng Y, Feng H, Huang L, Kang Z. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS ONE, 2012, 7(5): e37146
https://doi.org/10.1371/journal.pone.0037146 pmid: 22629358
64 Singh K, Foley R C, O?ate-Sánchez L. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002, 5(5): 430–436
https://doi.org/10.1016/S1369-5266(02)00289-3 pmid: 12183182
65 Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che F S. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. The EMBO Journal, 2009, 28(7): 926–936
https://doi.org/10.1038/emboj.2009.39 pmid: 19229294
66 Xia N, Zhang G, Liu X Y, Deng L, Cai G L, Zhang Y, Wang X J, Zhao J, Huang L L, Kang Z S. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 2010, 37(8): 3703–3712
https://doi.org/10.1007/s11033-010-0023-4 pmid: 20213512
67 Xia N, Zhang G, Sun Y F, Zhu L, Xu L S, Chen X M, Liu B, Yu Y T, Wang X J, Huang L L, Kang Z S. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010, 74(5): 394–402
https://doi.org/10.1016/j.pmpp.2010.06.005
68 Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987, 6(12): 3553–3558
pmid: 3428265
69 Al-Attala M N, Wang X, Abou-Attia M A, Duan X, Kang Z. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Molecular Biology, 2014, 84(4–5): 589–603
https://doi.org/10.1007/s11103-013-0156-7 pmid: 24293360
70 Zhang Y, Zhang G, Xia N, Wang X J, Huang L L, Kang Z S. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2008, 73(4): 88–94
https://doi.org/10.1016/j.pmpp.2009.02.002
71 Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou J M. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. The Plant Cell, 2009, 21(8): 2527–2540
https://doi.org/10.1105/tpc.108.065193 pmid: 19717619
72 Duan X, Wang X, Fu Y, Tang C, Li X, Cheng Y, Feng H, Huang L, Kang Z. TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Molecular Plant Pathology, 2013, 14(7): 728–739
https://doi.org/10.1111/mpp.12044 pmid: 23730729
73 Liu W, Frick M, Huel R, Nykiforuk C L, Wang X, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Molecular Plant, 2014, 7(12): 1740–1755
https://doi.org/10.1093/mp/ssu112 pmid: 25336565
74 Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919): 1360–1363
https://doi.org/10.1126/science.1166453 pmid: 19229000
75 Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323(5919): 1357–1360
https://doi.org/10.1126/science.1166289 pmid: 19228999
76 Feng H, Sun Y, Wang B, Wang X, Kang Z. Microarray-based identification of conserved microRNA from wheat and their expression profiles response to Puccinia striiformis f. sp. tritici. Canadian Journal of Plant Pathology, 2015, 37(1): 82–91
https://doi.org/10.1080/07060661.2014.999124
77 Feng H, Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Molecular Biology, 2013, 83(4–5): 433–443
https://doi.org/10.1007/s11103-013-0101-9 pmid: 23864359
78 Feng H, Zhang Q, Li H, Wang X, Wang X, Duan X, Wang B, Kang Z. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. Plant Physiology and Biochemistry, 2013, 68: 90–95
https://doi.org/10.1016/j.plaphy.2013.04.008 pmid: 23665893
79 Feng H, Wang X, Zhang Q, Fu Y, Feng C, Wang B, Huang L, Kang Z. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2014, 1839(1): 1–12
80 Ling P, Wang M, Chen X, Campbell K G. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). BMC Genomics, 2007, 8(1): 145
https://doi.org/10.1186/1471-2164-8-145 pmid: 17547766
81 Zhang Y, Qu Z, Zheng W, Liu B, Wang X, Xue X, Xu L, Huang L, Han Q, Zhao J, Kang Z. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici. BMC Genomics, 2008, 9(1): 203
https://doi.org/10.1186/1471-2164-9-203 pmid: 18447959
82 Yin C, Chen X, Wang X, Han Q, Kang Z, Hulbert S H. Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. Tritici. BMC Genomics, 2009, 10(1): 626
https://doi.org/10.1186/1471-2164-10-626 pmid: 20028560
83 Hu G, Linning R, McCallum B, Banks T, Cloutier S, Butterfield Y, Liu J, Kirkpatrick R, Stott J, Yang G, Smailus D, Jones S, Marra M, Schein J, Bakkeren G. Generation of a wheat leaf rust, Puccinia triticina, EST database from stage-specific cDNA libraries. Molecular Plant Pathology, 2007, 8(4): 451–467
https://doi.org/10.1111/j.1364-3703.2007.00406.x pmid: 20507513
84 Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders D G, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics, 2013, 14(1): 270
https://doi.org/10.1186/1471-2164-14-270 pmid: 23607900
85 Zheng W, Huang L, Huang J, Wang X, Chen X, Zhao J, Guo J, Zhuang H, Qiu C, Liu J, Liu H, Huang X, Pei G, Zhan G, Tang C, Cheng Y, Liu M, Zhang J, Zhao Z, Zhang S, Han Q, Han D, Zhang H, Zhao J, Gao X, Wang J, Ni P, Done W, Yang L, Yang H, Xu J, Zhang G, Kang Z. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Communications, 2013, 4: 2673
86 Duplessis S, Cuomo C A, Lin Y C, Aerts A, Tisserant E, Veneault-Fourrey C, Joly D L, Hacquard S, Amselem J, Cantarel B L, Chiu R, Coutinho P M, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr M G, Kodira C D, Kohler A, Kües U, Lindquist E A, Lucas S M, Mago R, Mauceli E, Morin E, Murat C, Pangilinan J L, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov A A, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan G A, Henrissat B, Van de Peer Y, Rouzé P, Ellis J G, Dodds P N, Schein J E, Zhong S, Hamelin R C, Grigoriev I V, Szabo L J, Martin F. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9166–9171
https://doi.org/10.1073/pnas.1019315108 pmid: 21536894
87 Saunders D G, Win J, Cano L M, Szabo L J, Kamoun S, Raffaele S. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS ONE, 2012, 7(1): e29847
https://doi.org/10.1371/journal.pone.0029847 pmid: 22238666
88 Dodds P N, Lawrence G J, Catanzariti A M, Ayliffe M A, Ellis J G. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. The Plant Cell, 2004, 16(3): 755–768
https://doi.org/10.1105/tpc.020040 pmid: 14973158
89 Catanzariti A M, Dodds P N, Lawrence G J, Ayliffe M A, Ellis J G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. The Plant Cell, 2006, 18(1): 243–256
https://doi.org/10.1105/tpc.105.035980 pmid: 16326930
90 Kemen E, Kemen A C, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele R T. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Molecular Plant-Microbe Interactions, 2005, 18(11): 1130–1139
https://doi.org/10.1094/MPMI-18-1130 pmid: 16353548
91 Upadhyaya N M, Mago R, Staskawicz B J, Ayliffe M A, Ellis J G, Dodds P N. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Molecular Plant-Microbe Interactions, 2014, 27(3): 255–264
https://doi.org/10.1094/MPMI-07-13-0187-FI pmid: 24156769
92 Rafiqi M, Gan P H, Ravensdale M, Lawrence G J, Ellis J G, Jones D A, Hardham A R, Dodds P N. Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. The Plant Cell, 2010, 22(6): 2017–2032
https://doi.org/10.1105/tpc.109.072983 pmid: 20525849
93 Kemen E, Kemen A, Ehlers A, Voegele R, Mendgen K. A novel structural effector from rust fungi is capable of fibril formation. The Plant Journal, 2013, 75(5): 767–780
https://doi.org/10.1111/tpj.12237 pmid: 23663217
94 Dong Y L, Yin C T, Hulbert S, Chen X M, Kang Z S. Cloning and expression analysis of three secreted protein genes from wheat stripe rust fungus Puccinia striiformis f. sp. tritici. World Journal of Microbiology & Biotechnology, 2011, 27(5): 1261–1265
https://doi.org/10.1007/s11274-010-0565-6
95 Gu B, Kale S D, Wang Q, Wang D, Pan Q, Cao H, Meng Y, Kang Z, Tyler B M, Shan W. Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS ONE, 2011, 6(11): e27217
https://doi.org/10.1371/journal.pone.0027217 pmid: 22076138
96 Guo J, Dai X, Xu J R, Wang Y, Bai P, Liu F, Duan Y, Zhang H, Huang L, Kang Z. Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS ONE, 2011, 6(7): e21895
https://doi.org/10.1371/journal.pone.0021895 pmid: 21779350
97 Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Molecular Plant-Microbe Interactions, 2011, 24(5): 554–561
https://doi.org/10.1094/MPMI-10-10-0229 pmid: 21190437
98 Zhang H, Guo J, Voegele R T, Zhang J, Duan Y, Luo H, Kang Z. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-induced RNAi system. PLoS ONE, 2012, 7(11): e49262
https://doi.org/10.1371/journal.pone.0049262 pmid: 23139840
99 Cheng Y, Wang X, Yao J, Voegele R T, Zhang Y, Wang W, Huang L, Kang Z. Characterization of protein kinase PsSRPKL, a novel pathogenicity factor in the wheat stripe rust fungus. Environmental Microbiology, 2015. DOI: 10.1111/1462-2920.12719 (first published online)
100 Tang C, Wei J, Han Q, Liu R, Duan X, Fu Y, Huang X, Wang X, Kang Z. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth. Scientific Reports, 2015, 5: 11241
https://doi.org/10.1038/srep11241 pmid: 26058921
[1] Minxia LU, Liang CHEN, Jinxiu WANG, Ruiliang LIU, Yang YANG, Meng WEI, Guanghui DONG. A brief history of wheat utilization in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 288-295.
[2] Caiyun LIU, Francisco PINTO, C. Mariano COSSANI, Sivakumar SUKUMARAN, Matthew P. REYNOLDS. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 296-308.
[3] Wujun MA, Zitong YU, Maoyun SHE, Yun ZHAO, Shahidul ISLAM. Wheat gluten protein and its impacts on wheat processing quality[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 279-287.
[4] Craig F. MORRIS. Development of soft kernel durum wheat[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 273-278.
[5] Carlos GUZMÁN, Karim AMMAR, Velu GOVINDAN, Ravi SINGH. Genetic improvement of wheat grain quality at CIMMYT[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 265-272.
[6] Hongxiang MA, Xu ZHANG, Jinbao YAO, Shunhe CHENG. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 251-264.
[7] Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
[8] Zhonghu HE, Xianchun XIA, Yong ZHANG, Yan ZHANG, Yonggui XIAO, Xinmin CHEN, Simin LI, Yuanfeng HAO, Awais RASHEED, Zhiyong XIN, Qiaosheng ZHUANG, Ennian YANG, Zheru FAN, Jun YAN, Ravi SINGH, Hans-Joachim BRAUN. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
[9] Rudi APPELS. Wheat research and breeding in the new era of a high-quality reference genome[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 225-232.
[10] Muhammad ZEESHAN, Waheed ARSHAD, Muhammad Imran KHAN, Shiraz ALI, Ali NAWAZ, Amina BATOOL, Muhammad TARIQ, Muhammad Imran AKRAM, Muhammad Amjad ALI. Breeding for pre-harvest sprouting resistance in bread wheat under rainfed conditions[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 253-261.
[11] Jiakun YAN, Suiqi ZHANG. Effects of dwarfing genes on water use efficiency of bread wheat[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 126-134.
[12] Yuan TIAN,Gangming ZHAN,Xia LU,Jie ZHAO,Lili HUANG,Zhensheng KANG. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 48-58.
[13] Yonggui XIAO,Jianjun LIU,Haosheng LI,Xinyou CAO,Xianchun XIA,Zhonghu HE. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 168-178.
[14] Liu WEI,Zhihui WU,Yufeng ZHANG,Dandan GUO,Yuzhou XU,Weixia CHEN,Haiying ZHOU,Mingshan YOU,Baoyun LI. Transcriptome analysis of wheat grain using RNA-Seq[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 214-222.
[15] Xiaojing WANG,Zhanhong MA,Yuying JIANG,Shouding SHI,Wancai LIU,Juan ZENG,Zhiwei ZHAO,Haiguang WANG. Modeling of the overwintering distribution of Puccinia striiformis f. sp. tritici based on meteorological data from 2001 to 2012 in China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 223-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed