Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (2) : 238-244    https://doi.org/10.15302/J-FASE-2022445
REVIEW
HARNESSING BIODIVERSITY FOR HEALTHY DAIRY FARMS
Ruqiang ZHANG, Zixi HAN, Qiaofang LU, Kang WANG, Yanjie CHEN, Wen-Feng CONG(), Fusuo ZHANG
College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
 Download: PDF(3609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Plant and soil biodiversity underline healthy dairy farms with less agrochemical inputs.

● Biodiversity-driven integrative approaches support healthy soils and high-quality milk products.

● Biodiversity-based modern farms can achieve high profitability with less environmental impacts.

Producing sufficient high-quality forage to meet the increasing domestic demand for safe and nutritious milk products is one of the critical challenges that Chinese dairy farms are facing. The increased forage biomass production, mainly contributed by agrochemicals inputs in China, is accompanied by tremendous impacts on the ecology of dairy farms and soil quality. This paper presents a framework for healthy dairy farms in which targeted management practices are applied for quality milk products with minimal adverse environmental impacts. The paper also summarizes biodiversity management practices at the field and landscape scales toward lessening inputs of water, fertilizers, pesticides and mitigating soil compaction. Dairy farming with biodiversity-driven technologies and solutions will be more productive in producing quality milk and minimizing environmental damage.

Keywords biodiversity      dairy farm      one health concept      soil health     
Corresponding Author(s): Wen-Feng CONG   
Just Accepted Date: 22 April 2022   Online First Date: 13 May 2022    Issue Date: 25 May 2022
 Cite this article:   
Ruqiang ZHANG,Zixi HAN,Qiaofang LU, et al. HARNESSING BIODIVERSITY FOR HEALTHY DAIRY FARMS[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 238-244.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022445
https://academic.hep.com.cn/fase/EN/Y2022/V9/I2/238
Fig.1  Biodiversity-based principles applied in dairy farms in support of One Health concept.
Fig.2  Biodiversity-based measures for constructing a healthy farm.
1 Association of China (DAC) Dairy . 2021 of China’s dairy industry quality report. DAC, 2021 (in Chinese)
2 Bureau of Statistics of China National . China Statistical Yearbook. Beijing: China Statistical Publishing House, 2020 (in Chinese)
3 C Liu . Review of the economic situation of China’s dairy industry in 2021 and outlook for 2022. Chinese Journal of Animal Science, 2022, 58(03): 232−238 (in Chinese)
4 T, Guo B, Xue J, Bai Q Z Sun . Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5): 1466−1474 (in Chinese)
5 Y, Li H M, Zhao Y L, You R X, Wu G B Liu . Evaluation on production performance and economic benefit of the single alfalfa field interplanting different forage crops in summer. Acta Prataculturea Sinica, 2019, 28(2): 73−87 (in Chinese)
6 X L, Fang C X, Zhang Z B Nan . Research advances in Fusarium root rot of alfalfa (Medicage sativa). Acta Prataculturea Sinica, 2019, 28(12): 169−183 (in Chinese)
7 D, Goulson E, Nicholls C, Botías E L Rotheray . Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 2015, 347( 6229): 1255957
https://doi.org/10.1126/science.1255957
8 H, Siviter E J, Bailes C D, Martin T R, Oliver J, Koricheva E, Leadbeater M J F Brown . Agrochemicals interact synergistically to increase bee mortality. Nature, 2021, 596( 7872): 389–392
https://doi.org/10.1038/s41586-021-03787-7
9 Y, Zhu R, Shen J, He Y, Wang X, Han Z Jia . China soil microbiome initiative: progress and perspective. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 554−565 (in Chinese)
10 J, Su X, An A, Hu Y Zhu . Advances and challenges in biosafety research for urban environments. Environmental Sciences, 2021, 42(6): 2565−2572 (in Chinese)
11 D, Destoumieux-Garzón P, Mavingui G, Boetsch J, Boissier F, Darriet P, Duboz C, Fritsch P, Giraudoux Roux F, Le S, Morand C, Paillard D, Pontier C, Sueru Y Voituron . The One Health concept: 10 years old and a long road ahead. Frontiers in Veterinary Science, 2018, 5 : 14
https://doi.org/10.3389/fvets.2018.00014
12 Y, Zhu J, Peng Z, Wei Q, Shen F Zhang . Linking the soil microbiome to soil health. Scientia Sinica Vitae, 2021, 51(1): 1–11 (in Chinese)
13 B, Gu D, Chen Y, Yang P, Vitousek Y Zhu . Soil-Food-Environment-Health nexus for sustainable development. Research, 2021, 2021 : 9804807
14 Barber N A, Soper Gorden N L. How do belowground organisms influence plant-pollinator interactions? Journal of Plant Ecology, 2014, 8(1): 1–11
15 W F, Cong C, Zhang C, Li G, Wang F Zhang . Designing diversified cropping systems in China: theory, approaches and implementation. Frontiers of Agricultural Science and Engineering, 2021, 8( 3): 362–372
16 R D, Bardgett der Putten W H van . Belowground biodiversity and ecosystem functioning. Nature, 2014, 515( 7528): 505–511
https://doi.org/10.1038/nature13855
17 H, Li G, Huang Q, Meng L, Ma L, Yuan F, Wang W, Zhang Z, Cui J, Shen X, Chen R, Jiang F Zhang . Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 2011, 349( 1−2): 157–167
https://doi.org/10.1007/s11104-011-0909-5
18 Z, Bai H, Li X, Yang B, Zhou X, Shi B, Wang D, Li J, Shen Q, Chen W, Qin O, Oenema F Zhang . The cirtical soil P level for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372( 1−2): 27–37
https://doi.org/10.1007/s11104-013-1696-y
19 J N M, Philp P S, Cornish K S H, Te R W, Bell W, Vance V, Lim X, Li S, Kamphayea M D Denton . Insufficient potassium and sulfur supply threaten the productivity of perennial forage grasses in smallholder farms on tropical sandy soils. Plant and Soil, 2021, 461( 1−2): 617–630
https://doi.org/10.1007/s11104-021-04852-w
20 J, Liu A, Shu W, Song W, Shi M, Li W, Zhang Z, Li G, Liu F, Yuan S, Zhang Z, Liu Z Gao . Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 2021, 404 : 115287
https://doi.org/10.1016/j.geoderma.2021.115287
21 C, Liu C, Liu J, Wang X Xin . The current situation of resource utilization of livestock and poultry manure in China and the countermeasures and suggestions. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42( 2): 35–43
22 W F, Cong E, Hoffland L, Li J, Six J H, Sun X G, Bao F S, Zhang der Werf W van . Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21( 4): 1715–1726
https://doi.org/10.1111/gcb.12738
23 X F, Li Z G, Wang X G, Bao J H, Sun S C, Yang P, Wang C B, Wang J P, Wu X R, Liu X L, Tian Y, Wang J P, Li Y, Wang H Y, Xia P P, Mei X F, Wang J H, Zhao R P, Yu W P, Zhang Z X, Che L G, Gui R M, Callaway D, Tilman L Li . Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4( 11): 943–950
https://doi.org/10.1038/s41893-021-00767-7
24 G F, Veen E R J, Wubs R D, Bardgett E, Barrios M A, Bradford S, Carvalho Deyn G, De Vries F T, de K E, Giller D, Kleijn D A, Landis W A H, Rossing M, Schrama J, Six P C, Struik Gils S, van J S C, Wiskerke der Putten W H, van L E M Vet . Applying the aboveground-belowground interaction concept in agriculture: spatio-temporal scales matter. Frontiers in Ecology and Evolution, 2019, 7 : 7
https://doi.org/10.3389/fevo.2019.00300
25 Z, Abail J K Whalen . Earthworm contributions to soil nitrogen supply in corn-soybean agroecosystems in Quebec, Canada. Pedosphere, 2021, 31( 3): 405–412
https://doi.org/10.1016/S1002-0160(20)60086-8
26 T, Li J, Fan Z, Qian G, Yuan D, Meng S, Guo W Lv . Predation on weed seeds and seedling by Pheretima guillelmi and its potential for weed biocontrol. Weed Science, 2020, 68( 6): 639–645
https://doi.org/10.1017/wsc.2020.65
27 X, Sun Q, Li H, Yao M, Liu D, Wu D, Zhu Y Zhu . Soil fauna and soil health. Acta Pedologica Sinica, 2021, 58(5): 1073−1083 (in Chinese)
28 J, Lehmann D A, Bossio I, Kogel-Knabner M C Rillig . The concept and future prospects of soil health. Nature Reviews: Earth & Environment, 2020, 1( 10): 544–553
https://doi.org/10.1038/s43017-020-0080-8
29 J, Zhang der Heijden M G A, van F, Zhang S F Bender . Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering, 2020, 7( 3): 236–242
https://doi.org/10.15302/J-FASE-2020336
30 M M, Pulleman Boer W, de K E, Giller T W Kuyper . Soil biodiversity and nature-mimicry in agriculture; the power of metaphor. Outlook on Agriculture, 2022, 51( 1): 75–90
https://doi.org/10.1177/00307270221080180
31 Q, Lu T, Liu N, Wang Z, Dou K, Wang Y Zuo . A review of soil nematodes as biological indicators for the assessment of soil health. Frontiers of Agricultural Science and Engineering, 2020, 7( 3): 275–281
https://doi.org/10.15302/J-FASE-2020327
32 D A Neher . Role of nematodes in soil health and their use as indicators. Journal of Nematology, 2001, 33( 4): 161–168
33 C R, Ma S B, He X C, Bai T, Wang J H, Zhang K L, Feng Y K Xia . Effects of alfalfa intercropping on soil carbon, nitrogen, and phosphorus and the fungal community in the rhizosphere of soils in silage maize. Pratacultural Science, 2020, 37(1): 20−29 (in Chinese)
34 Y Zhao . Study on advantage of alfalfa/gramineae forage intercropping and mechanism of nitrogen efficiency and effect of soil microecological. Lanzhou, China: Gansu Agricultural University, 2020 (in Chinese)
35 C, Li E, Hoffland T W, Kuyper Y, Yu C, Zhang H, Li F, Zhang der Werf W van . Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6( 6): 653–660
https://doi.org/10.1038/s41477-020-0680-9
36 J, Zhao Y, Yang K, Zhang J, Jeong Z, Zeng H Zang . Does crop rotation yield more in China? A meta-analysis.. Field Crops Research, 2020, 245 : 107659
https://doi.org/10.1016/j.fcr.2019.107659
37 Y L, Zhang T F, Yu F, Hao K Gao . Effects of fertilization and legume-grass ratio on forage yield and NPK utilization efficiency. Acta Prataculturae Sinica, 2020, 29(11): 91−101 (in Chinese)
38 D A, Neher T, Nishanthan Z J, Grabau S Y Chen . Crop rotation and tillage affect nematode communities more than biocides in monoculture soybean. Applied Soil Ecology, 2019, 140 : 89–97
https://doi.org/10.1016/j.apsoil.2019.03.016
39 X, Jin J, Wang D, Li F, Wu X Zhou . Rotations with Indian mustard and wild rocket suppressed cucumber fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms, 2019, 7( 2): 57
https://doi.org/10.3390/microorganisms7020057
40 Y, Chen M, Bonkowski Y, Shen B S, Griffiths Y, Jiang X, Wang B Sun . Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 2020, 8( 1): 4
https://doi.org/10.1186/s40168-019-0775-6
41 B, Mhlanga B S, Chauhan C Thierfelder . Weed management in maize using crop competition: a review. Crop Protection, 2016, 88 : 28–36
https://doi.org/10.1016/j.cropro.2016.05.008
42 W F, Cong M, Suter A, Lüscher J Eriksen . Species interactions between forbs and grass-clover contribute to yield gains and weed suppression in forage grassland mixtures. Agriculture, Ecosystems & Environment, 2018, 268 : 154–161
https://doi.org/10.1016/j.agee.2018.09.019
43 X M, Liu J, Li X, Xu B C, Zhao B H, Li S X, Liu G Q Wang . Competitive effects of mung bean (Vigna radiata L.) on the growth of three dominant weeds in summer maize fields. Chinese Journal of Ecology, 2021, 40(5): 1324−1330 (in Chinese)
44 G C, Adamidis R V, Cartar A P, Melathopoulos S F, Pernal S E Hoover . Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: a comparison of 23 canola varieties. Scientific Reports, 2019, 9( 1): 14208
https://doi.org/10.1038/s41598-019-50811-y
45 I, Steffan-Dewenter S G, Potts L Packer . Pollinator diversity and crop pollination services are at risk. Trends in Ecology & Evolution, 2005, 20( 12): 651–652
https://doi.org/10.1016/j.tree.2005.09.004
46 Richards A J. Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Annals of Botany, 2001, 88(2): 165–172
47 K B, Bhandari C P, West S D, Longing C P, Brown P E, Green E Barkowsky . Pollinator abundance in semiarid pastures as affected by forage species. Crop Science, 2018, 58( 6): 2665–2671
https://doi.org/10.2135/cropsci2018.06.0393
48 W, Cong Y L, Dupont K, Søegaard J Eriksen . Optimizing yield and flower resources for pollinators in intensively managed multi-species grassland. Agriculture, Ecosystems & Environment, 2020, 302 : 107062
https://doi.org/10.1016/j.agee.2020.107062
49 R, Marja D, Kleijn T, Tscharntke A M, Klein T, Frank P Batáry . Effectiveness of agri-environmental management on pollinators is moderated more by ecological contrast than by landscape structure or land-use intensity. Ecology Letters, 2019, 22( 9): 1493–1500
https://doi.org/10.1111/ele.13339
50 M J, Suso P J, Bebeli S, Christmann C, Mateus V, Negri de Carvalho M A A, Pinheiro R, Torricelli M M Veloso . Enhancing legume ecosystem services through an understanding of plant-pollinator interplay. Frontiers in Plant Science, 2016, 7 : 333
https://doi.org/10.3389/fpls.2016.00333
51 Sanchez M E, Narjes Arango J A, Cardoso S Burkart . Promoting forage legume-pollinator interactions: integrating crop pollination management, native beekeeping and silvopastoral systems in tropical Latin America. Frontiers in Sustainable Food Systems, 2021, 5 : 725981
https://doi.org/10.3389/fsufs.2021.725981
52 H, Korevaar R Geerts . Long-term effects of nutrients on productivity and species-richness of grasslands: the Ossekampen Grassland Experiment. Aspects of Applied Biology, 2015, 128 : 253–256
53 M, Pierik Ruijven J, Van T M, Bezemer R H E M, Geerts F Berendse . Recovery of plant species richness during long-term fertilization of a species-rich grassland. Ecology, 2011, 92( 7): 1393–1398
https://doi.org/10.1890/10-0210.1
54 J W A, Langeveld A, Verhagen J J, Neeteson Keulen H, van J G, Conijn R L M, Schils J Oenema . Evaluating farm performance using agri-environmental indicators: recent experiences for nitrogen management in the Netherlands. Journal of Environmental Management, 2007, 82( 3): 363–376
https://doi.org/10.1016/j.jenvman.2005.11.021
55 M, Albrecht D, Kleijn N M, Williams M, Tschumi B R, Blaauw R, Bommarco A J, Campbell M, Dainese F A, Drummond M H, Entling D, Ganser de Groot G, Arjen D, Goulson H, Grab H, Hamilton F, Herzog R, Isaacs K, Jacot P, Jeanneret M, Jonsson E, Knop C, Kremen D A, Landis G M, Loeb L, Marini M, McKerchar L, Morandin S C, Pfister S G, Potts M, Rundlöf H, Sardiñas A, Sciligo C, Thies T, Tscharntke E, Venturini E, Veromann I M G, Vollhardt F, Wäckers K, Ward D B, Westbury A, Wilby M, Woltz S, Wratten L Sutter . The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23( 10): 1488–1498
https://doi.org/10.1111/ele.13576
56 A, Wietzke K, Albert E, Bergmeier L M E, Sutcliffe Waveren C S, van C Leuschner . Flower strips, conservation field margins and fallows promote the arable flora in intensively farmed landscapes: results of a 4-year study. Agriculture, Ecosystems & Environment, 2020, 304 : 107142
https://doi.org/10.1016/j.agee.2020.107142
[1] Ting LUO, Prakash LAKSHMANAN, Zhongfeng ZHOU, Yuchi DENG, Yan DENG, Linsheng YANG, Dongliang HUANG, Xiupeng SONG, Xihui LIU, Wen-Feng CONG, Jianming WU, Xinping CHEN, Fusuo ZHANG. SUSTAINABLE SUGARCANE CROPPING IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 272-283.
[2] Jiafa LUO, Stewart LEDGARD. NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 148-158.
[3] Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD. Using a systems modeling approach to improve soil management and soil quality[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 289-295.
[4] Yakov KUZYAKOV, Anna GUNINA, Kazem ZAMANIAN, Jing TIAN, Yu LUO, Xingliang XU, Anna YUDINA, Humberto APONTE, Hattan ALHARBI, Lilit OVSEPYAN, Irina KURGANOVA, Tida GE, Thomas GUILLAUME. New approaches for evaluation of soil health, sensitivity and resistance to degradation[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 282-288.
[5] Qiaofang LU, Tongtong LIU, Nanqi WANG, Zhechao DOU, Kunguang WANG, Yuanmei ZUO. A review of soil nematodes as biological indicators for the assessment of soil health[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 275-281.
[6] Rebecca SCHNEIDER, Stephen MORREALE, Zhigang LI, Erin MENZIES PLUER, Kirsten KURTZ, Xilu NI, Cuiping WANG, Changxiao LI, Harold VAN ES. Restoring soil health to reduce irrigation demand and buffer the impacts of drought[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 339-346.
[7] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
[8] Ruixia SHEN,Chunyan TIAN,Zhidan LIU,Yuanhui ZHANG,Baoming LI,Haifeng LU,Na DUAN. Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan Province, China[J]. Front. Agr. Sci. Eng. , 2015, 2(3): 266-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed