Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 344-355    https://doi.org/10.15302/J-FASE-2022451
RESEARCH ARTICLE
INTERCROPPING TEA PLANTATIONS WITH SOYBEAN AND RAPESEED ENHANCES NITROGEN FIXATION THROUGH SHIFTS IN SOIL MICROBIAL COMMUNITIES
Yongjia ZHONG, Lini LIANG, Ruineng XU, Hanyu XU, Lili SUN, Hong LIAO()
Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 Download: PDF(5731 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Intercropping change soil bacterial communities in tea plantations.

● Intercropping increasing nitrogen cycling in the soils of tea plantations.

Intercropping with eco-friendly crops is a well-known strategy for improving agriculture sustainability with benefits throughout the soil community, though the range of crop impacts on soil microbiota and extent of feedbacks to crops remain largely unclear. This study evaluated the impacts of different intercropping systems on soil bacterial community composition, diversity, and potential functions in tea gardens. Intercropping systems were found to be significantly influenced soil microbiota. Within the three tested intercropping systems (tea-soybean, tea-rapeseed and tea-soybean-rapeseed), the tea-soybean-rapeseed intercropping system had the most dramatic influence on soil microbiota, with increases in richness accompanied by shifts in the structure of tea garden soil bacterial networks. Specifically, relative abundance of potentially beneficial bacteria associated with essential mineral nutrient cycling increased significantly in the tea-soybean-rapeseed intercropping system. In addition, soil microbial functions related to nutrient cycling functions were significantly enhanced. This was in accordance with increasing relative abundance of nitrogen cycling bacteria, including Burkholderia spp. and Rhodanobacter spp. Based on these results, it is proposed that intercropping tea plantation with soybean and rapeseed may benefit soil microbiota, and thereby promises to be an important strategy for improving soil health in ecologically sound tea production systems.

Keywords intercropping      rapeseed      soil microbe      soybean      tea garden     
Corresponding Author(s): Hong LIAO   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 09 June 2022   Online First Date: 04 July 2022    Issue Date: 09 September 2022
 Cite this article:   
Yongjia ZHONG,Lini LIANG,Ruineng XU, et al. INTERCROPPING TEA PLANTATIONS WITH SOYBEAN AND RAPESEED ENHANCES NITROGEN FIXATION THROUGH SHIFTS IN SOIL MICROBIAL COMMUNITIES[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 344-355.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022451
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/344
Fig.1  Experimental design of soybean and rapeseed intercropping in this study. Diagram of tea rows and soil sampling sites in the tea garden and the intercropping systems (tea-control, tea-soybean, tea-rapeseed and tea-rapeseed-soybean) used in this study in the tea garden. The distance between tea rows are usually greater than 30 cm. with the soil sampling locations central between the tea rows. (a) IC, tea-control; (b) IR, tea-rapeseed; (c) IS, tea-soybean; (d) ISR, tea-rapeseed-soybean intercropping.
Group pH Organic matter (OM) (g·kg−1) Alkali-hydrolyzable nitrogen (AN) (mg·kg−1) Available phosphorus(AP) (mg·kg−1) Available potassium (AK) (mg·kg−1)
IC 4.46 ± 0.06ab 18.0 ± 1.8b 71.1 ± 9.4a 52.9 ± 16.9a 130 ± 10.3a
IS 4.60 ± 0.04a 24.2 ± 1.6b 62.7 ± 4.4ab 30.6 ± 6.5a 103 ± 8.0b
IR 4.43 ± 0.03b 22.3 ± 1.1b 70.6 ± 4.0a 44.3 ± 9.9a 133 ± 6.0a
ISR 4.59 ± 0.05a 31.5 ± 2.5a 52.4 ± 3.3b 32.5 ± 12.6a 100 ± 12.1b
Tab.1  Basic soil chemical properties under four intercropping treatments
Fig.2  Richness and diversity of soil bacterial communities in tea garden under four intercropping systems. (a) Rarefied fraction curves of bacterial community richness in each treatment. (b,c) Comparison of bacterial communities associated with each intercropping treatment using the Chao1 index (b) and Shannon index (c). Median of treatments with the same letter are not significantly different (Tukey’s HSD test, P < 0.05). IC, tea-control; IS, tea-soybean; IR, tea-rapeseed; ISR, tea-rapeseed-soybean intercropping.
Fig.3  Influence of four intercropping systems to the structure of soil bacterial communities. Constrained PCoA of bacterial communities in tea garden soils based on distance matrix of unweighted UniFrac (a) and weighted UniFrac (b) using the anova.acc() function in R “Vegan” package (version 2.4.0). Comparisons of soil bacterial communities of four intercropping systems with control plots using ANOSIM analysis. The P-value was calculated by permutation testing (n = 999).
Fig.4  Influence of four intercropping systems to the composition of soil bacterial communities. (a) Composition of bacterial communities at phylum taxonomic level in a tea garden under four intercropping systems. (b) Venn diagram of overlapping OTUs and specific OTUs in tea garden soil under four intercropping systems.
Fig.5  Intercropping drives the establishment of distinct microbial networks. Comparisons of bacterial co-occurrence networks in the soils of a tea garden subjected to four intercropping systems. Co-occurrence networks were constructed based on correlation analysis of the relative abundance of microbial OTUs across replicates and intercropping treatments. The size of the nodes is proportional to the number of connections to other nodes in the network. The color of nodes indicates the module of the microbes as shown in the key. Connections between nodes represent significant correlations (P < 0.05 and r < 0.70 in Spearman’s rank correlation test). Hub microbes in each co-occurrence network are indicated by darker nodes. (a) IC, tea-control; (b) IR, tea-rapeseed; (c) IS, tea-soybean; (d) ISR, tea-rapeseed-soybean intercropping.
Fig.6  Biomarkers for four intercropping system. Comparisons of bacteria identified as significantly different between the four intercropping systems tested using LEfSe analysis and presented as LDA scores of significant biomarker bacteria between IS and IC (a), IR and IC (b) and ISR and control (c) treatments. LDA scores are shown as horizontal bars for biomarker bacteria returned as significant in the Kruskal–Wallis rank sum test at P < 0.05. LDA: linear discriminant analysis; IC: tea-control; IS: tea-soybean; IR: tea-rapeseed; ISR: tea-rapeseed-soybean intercropping.
Fig.7  Functional change of soil microbes for four intercropping patterns. Comparisons of potential nutrient cycling genes between different cropping system. Counts of function genes relative to nitrogen fixation (a), nitrification (b), nitrite oxidation (c), nitrate reduction (d), nitrate denitrification (e), nitrite denitrification (f), sulfate oxidation (g), and iron respiration (h) between different intercropping. Means with the same letter are not significantly different (Duncan’s multiple range comparison tests, P < 0.05). IC: tea-control; IR: tea-rapeseed; IS: tea-soybean; ISR: tea-rapeseed-soybean intercropping.
1 Y H, Kim Y S, Won X, Yang M, Kumazoe S, Yamashita A, Hara A, Takagaki K, Goto F, Nanjo H Tachibana. Green tea catechin metabolites exert immunoregulatory effects on CD4+ T cell and natural killer cell activities. Journal of Agricultural and Food Chemistry , 2016, 64( 18): 3591–3597
https://doi.org/10.1021/acs.jafc.6b01115
2 L G, Xiong J A, Huang J, Li P H, Yu Z, Xiong J W, Zhang Y S, Gong Z H, Liu J H Chen. Black tea increased survival of Caenorhabditis elegans under stress. Journal of Agricultural and Food Chemistry , 2014, 62( 46): 11163–11169
https://doi.org/10.1021/jf503120j
3 C S, Yang J Hong. Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annual Review of Nutrition , 2013, 33( 1): 161–181
https://doi.org/10.1146/annurev-nutr-071811-150717
4 A B, Hodgson R K, Randell K, Mahabir-Jagessar-T S, Lotito T, Mulder D J, Mela A E, Jeukendrup D M Jacobs. Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma. Journal of Agricultural and Food Chemistry , 2014, 62( 5): 1198–1208
https://doi.org/10.1021/jf404872y
5 Y, Liu D, Wang S, Zhang H Zhao. Global expansion strategy of Chinese herbal tea beverage. Advance Journal of Food Science and Technology (AJFST) , 2015, 7( 9): 739–745
https://doi.org/10.19026/ajfst.7.1731
6 X F, Hu A Q, Wu F C, Wang F S Chen. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation. Environmental Monitoring and Assessment , 2019, 191( 2): 99
https://doi.org/10.1007/s10661-019-7248-z
7 M L, Bornø D S, Müller-Stöver F Liu. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment , 2018, 627 : 963–974
https://doi.org/10.1016/j.scitotenv.2018.01.283
8 L S, Silva A R, Seabra J N, Leitão H G Carvalho. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula . Plant Science , 2015, 240: 98−108
9 L, Ma H, Chen Y, Shan M, Jiang G, Zhang L, Wu J, Ruan J, Lv Y, Shi L, Pan C, Huang L, Liu B, Liang M, Wang J Pan. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhengjiang Province. Journal of Tea Science , 2013, 33(1): 74−84 ( in Chinese)
10 Y, Wu Y, Li X, Fu X, Liu J, Shen Y, Wang J Wu. Three-dimensional spatial variability in soil microorganisms of nitrification and denitrification at row-transect scale in a tea field. Soil Biology & Biochemistry , 2016, 103 : 452–463
https://doi.org/10.1016/j.soilbio.2016.09.013
11 Y, Li Z, Li Y, Arafat W, Lin Y, Jiang B, Weng W Lin. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology , 2017, 81 : 48–54
https://doi.org/10.1016/j.ejsobi.2017.06.008
12 X, Yang K, Ni Y, Shi X, Yi Q, Zhang L, Fang L, Ma L Ruan. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems & Environment , 2018, 252 : 74–82
https://doi.org/10.1016/j.agee.2017.10.004
13 Z, Wang Y, Geng T Liang. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Science of the Total Environment , 2020, 713 : 136439
https://doi.org/10.1016/j.scitotenv.2019.136439
14 L, Sun Y, Liu L, Wu H Liao. Comprehensive analysis revealed the close relationship between N/P/K status and secondary metabolites in tea leaves. ACS Omega , 2019, 4( 1): 176–184
https://doi.org/10.1021/acsomega.8b02611
15 A A, Gomez K A Gomez. Multiple Cropping in the Humid Tropics of Asia. Ottawa: International Development Research Centre ( IDRC ), 1983
16 D Tilman. Benefits of intensive agricultural intercropping. Nature Plants , 2020, 6( 6): 604–605
https://doi.org/10.1038/s41477-020-0677-4
17 B, Li Y Y, Li H M, Wu F F, Zhang C J, Li X X, Li H, Lambers L Li. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 23): 6496–6501
https://doi.org/10.1073/pnas.1523580113
18 Y, Zhu H, Chen J, Fan Y, Wang Y, Li J, Chen J, Fan S, Yang L, Hu H, Leung T W, Mew P S, Teng Z, Wang C C Mundt. Genetic diversity and disease control in rice. Nature , 2000, 406( 6797): 718–722
https://doi.org/10.1038/35021046
19 J, Li Y, Zhou B, Zhou H, Tang Y, Chen X, Qiao J Tang. Habitat management as a safe and effective approach for improving yield and quality of tea (Camellia sinensis) leaves. Scientific Reports , 2019, 9( 1): 433
https://doi.org/10.1038/s41598-018-36591-x
20 X F, Li Z G, Wang X G, Bao J H, Sun S C, Yang P, Wang C B, Wang J P, Wu X R, Liu X L, Tian Y, Wang J P, Li Y, Wang H Y, Xia P P, Mei X F, Wang J H, Zhao R P, Yu W P, Zhang Z X, Che L G, Gui R M, Callaway D, Tilman L Li. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability , 2021, 4( 11): 943–950
https://doi.org/10.1038/s41893-021-00767-7
21 J L, Li P F, Tu N, Chen J C, Tang X R, Wang H, Nian H, Liao X L Yan. Effects of tea intercropping with soybean. Scientia Agricultura Sinica , 2008, 41(7): 2040−2047 ( in Chinese)
22 T H, Farooq U, Kumar J, Mo A, Shakoor J, Wang M H U, Rashid M A, Tufail X, Chen W Yan. Intercropping of peanut-tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants , 2021, 10( 5): 881
https://doi.org/10.3390/plants10050881
23 Z, Xu C, Li C, Zhang Y, Yu der Werf W, van F Zhang. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; a meta-analysis. Field Crops Research , 2020, 246 : 107661
https://doi.org/10.1016/j.fcr.2019.107661
24 Y, Duan J, Shen X, Zhang B, Wen Y, Ma Y, Wang W, Fang X Zhu. Effects of soybean-tea intercropping on soil-available nutrients and tea quality. Acta Physiologiae Plantarum , 2019, 41( 8): 140
https://doi.org/10.1007/s11738-019-2932-8
25 Z, Zhou Y, Liu L M, Zhang R N, Xu L L, Sun H Liao. Soil nutrient status in Wuyi tea region and its effects on tea quality-related constituents. Scientia Agricultura Sinica , 2019, 52(8): 1425−1434 ( in Chinese)
26 Y, Liu L L, Sun H Liao. Effects of nutrient management on soil fertility and tea quality in anxi tea plantation. Acta Pedologica Sinica , 2020, 57(4): 917−927 ( in Chinese)
27 L N, Liang X G, Guo X, Liao L, Qin H Liao. Screening and preliminary application of rapeseed materials as green manure intercropped in tea plantations. Chinese Journal of Oil Crop Sciences , 2019, 41(6): 825−834 ( in Chinese)
28 M, Lu C, Shi R, Xu M Wang. Investigation of Picromerus lewisi Scott as the natural enemy of tea looper in Wuyishan rock tea production area . Tea in Fujian , 2020, 42(11): 8−9 ( in Chinese)
29 Y, Zhong Y, Yang P, Liu R, Xu C, Rensing X, Fu H Liao. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant, Cell & Environment , 2019, 42( 6): 2028–2044
https://doi.org/10.1111/pce.13519
30 W, Wang S, Zhai Y, Xia H, Wang D, Ruan T, Zhou Y, Zhu H, Zhang M, Zhang H, Ye W, Ren L Yang. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. Microbiome , 2019, 7( 1): 151
https://doi.org/10.1186/s40168-019-0761-z
31 E, Bolyen J R, Rideout M R, Dillon N A, Bokulich C C, Abnet G A, Al-Ghalith H, Alexander E J, Alm M, Arumugam F, Asnicar Y, Bai J E, Bisanz K, Bittinger A, Brejnrod C J, Brislawn C T, Brown B J, Callahan A M, Caraballo-Rodríguez J, Chase E K, Cope Silva R, Da C, Diener P C, Dorrestein G M, Douglas D M, Durall C, Duvallet C F, Edwardson M, Ernst M, Estaki J, Fouquier J M, Gauglitz S M, Gibbons D L, Gibson A, Gonzalez K, Gorlick J, Guo B, Hillmann S, Holmes H, Holste C, Huttenhower G A, Huttley S, Janssen A K, Jarmusch L, Jiang B D, Kaehler K B, Kang C R, Keefe P, Keim S T, Kelley D, Knights I, Koester T, Kosciolek J, Kreps M G I, Langille J, Lee R, Ley Y X, Liu E, Loftfield C, Lozupone M, Maher C, Marotz B D, Martin D, McDonald L J, McIver A V, Melnik J L, Metcalf S C, Morgan J T, Morton A T, Naimey J A, Navas-Molina L F, Nothias S B, Orchanian T, Pearson S L, Peoples D, Petras M L, Preuss E, Pruesse L B, Rasmussen A, Rivers M S II, Robeson P, Rosenthal N, Segata M, Shaffer A, Shiffer R, Sinha S J, Song J R, Spear A D, Swafford L R, Thompson P J, Torres P, Trinh A, Tripathi P J, Turnbaugh S, Ul-Hasan der Hooft J J J, van F, Vargas Y, Vázquez-Baeza E, Vogtmann Hippel M, von W, Walters Y, Wan M, Wang J, Warren K C, Weber C H D, Williamson A D, Willis Z Z, Xu J R, Zaneveld Y, Zhang Q, Zhu R, Knight J G Caporaso. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology , 2019, 37( 8): 852–857
https://doi.org/10.1038/s41587-019-0209-9
32 M Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal , 2011, 17( 1): 10–12
https://doi.org/10.14806/ej.17.1.200
33 T, Rognes T, Flouri B, Nichols C, Quince F Mahé. VSEARCH: a versatile open source tool for metagenomics. PeerJ , 2016, 4 : e2584
https://doi.org/10.7717/peerj.2584
34 A, Amir D, Mcdonald J A, Navas-Molina E, Kopylova J T, Morton Xu Z, Zech E P, Kightley L R, Thompson E R, Hyde A, Gonzalez R Knight. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems , 2017, 2( 2): e00191–16
https://doi.org/10.1128/mSystems.00191-16
35 P, Yilmaz L W, Parfrey P, Yarza J, Gerken E, Pruesse C, Quast T, Schweer J, Peplies W, Ludwig F O Glöckner. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research , 2014, 42( D1): D643–D648
https://doi.org/10.1093/nar/gkt1209
36 M, Li R, Liu Y, Li C, Wang W, Ma L, Zheng K, Zhang X, Fu X, Li Y, Su G, Huang Y, Zhong H Liao. Functional investigation of plant growth promoting rhizobacterial communities in sugarcane. Frontiers in Microbiology , 2022, 12 : 783925
https://doi.org/10.3389/fmicb.2021.783925
37 S, Louca L W, Parfrey M Doebeli. Decoupling function and taxonomy in the global ocean microbiome. Science , 2016, 353( 6305): 1272–1277
https://doi.org/10.1126/science.aaf4507
38 A Field. Discovering statistics using SPSS. SAGE , 2013
39 D F, Herridge M B, Peoples R M Boddey. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil , 2008, 311( 1−2): 1–18
https://doi.org/10.1007/s11104-008-9668-3
40 X, Gao M, Wu R, Xu X, Wang R, Pan H J, Kim H Liao. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One , 2014, 9( 5): e95031
https://doi.org/10.1371/journal.pone.0095031
41 L, Chen H Liao. Engineering crop nutrient efficiency for sustainable agriculture. Journal of Integrative Plant Biology , 2017, 59( 10): 710–735
https://doi.org/10.1111/jipb.12559
42 D, Gutiérrez-Alanís J O, Ojeda-Rivera L, Yong-Villalobos L, Cárdenas-Torres L Herrera-Estrella. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends in Plant Science , 2018, 23( 8): 721–730
https://doi.org/10.1016/j.tplants.2018.04.006
43 L, Cavaletti P, Monciardini R, Bamonte P, Schumann M, Rohde M, Sosio S Donadio. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Applied and Environmental Microbiology , 2006, 72( 6): 4360–4369
https://doi.org/10.1128/AEM.00132-06
44 S, Yabe Y, Aiba Y, Sakai M, Hazaka A Yokota. 2007 and emended description of the class Ktedonobacteria . International Journal of Systematic and Evolutionary Microbiology , 2010, 60(8): 1794−1801
45 S, Yabe Y, Sakai K, Abe A, Yokota A, Také A, Matsumoto A, Sugiharto D, Susilowati M, Hamada K, Nara Sudiana I, Made S Otsuka. Dictyobacter aurantiacus gen. nov., sp. nov., a member of the family Ktedonobacteraceae, isolated from soil, and emended description of the genus Thermosporothrix . International Journal of Systematic and Evolutionary Microbiology , 2017, 67(8): 2615−2621
46 M, Astorga-Eló Q, Zhang G, Larama A, Stoll M J, Sadowsky M A Jorquera. Composition, predicted functions and co-occurrence networks of Rhizobacterial communities impacting flowering desert events in the Atacama Desert, Chile. Frontiers in Microbiology , 2020, 11 : 571
https://doi.org/10.3389/fmicb.2020.00571
47 L, Canfora G, Bacci F, Pinzari Papa G, Lo C, Dazzi A Benedetti. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil. PLoS One , 2014, 9( 9): e106662
https://doi.org/10.1371/journal.pone.0106662
48 H, Nacke A, Thürmer A, Wollherr C, Will L, Hodac N, Herold I, Schoning M, Schrumpf R Daniel. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One , 2011, 6( 2): e17000
https://doi.org/10.1371/journal.pone.0017000
49 S V, Tarlachkov I P, Starodumova L V, Dorofeeva N V, Prisyazhnaya S A, Leyn J E, Zlamal S, Albu S A, Nadler S A, Subbotin L I Evtushenko. Draft genome sequences of 13 plant-associated Actinobacteria of the family Microbacteriaceae . Microbiology Resource Announcements , 2020, 9(38): e00795-20
50 O V, Vasilenko I P, Starodumova L V, Dorofeeva S V, Tarlachkov N V, Prisyazhnaya V N, Chizhov S A, Subbotin M, Huntemann A, Clum K, Duffy M, Pillay K, Palaniappan N, Varghese I A, Chen D, Stamatis T B K, Reddy R, O’Malley C, Daum N, Shapiro N, Ivanova N C, Kyrpides T, Woyke W B, Whitman L I Evtushenko. Draft genome sequences of new isolates and the known species of the family Microbacteriaceae associated with plants. Microbiology Resource Announcements , 2018, 7( 11): e01051-18
https://doi.org/10.1128/MRA.01051-18
51 S V, Tarlachkov I P, Starodumova L V, Dorofeeva N V, Prisyazhnaya T V, Roubtsova V N, Chizhov S A, Nadler S A, Subbotin L I Evtushenko. Draft genome sequences of 28 Actinobacteria of the family Microbacteriaceae Associated with Nematode-Infected Plants. Microbiology Resource Announcements , 2021, 10( 9): e01400-20
https://doi.org/10.1128/MRA.01400-20
52 R H, Dahal D K, Chaudhary J Kim. Rhodanobacter hydrolyticus sp. nov., a novel DNA- and tyrosine-hydrolysing gammaproteobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology , 2018, 68( 8): 2580–2586
https://doi.org/10.1099/ijsem.0.002881
53 Y, Huo J P, Kang J K, Park J, Li L, Chen D C Yang. Rhodanobacter ginsengiterrae sp. nov., an antagonistic bacterium against root rot fungal pathogen Fusarium solani, isolated from ginseng rhizospheric soil. Archives of Microbiology , 2018, 200( 10): 1457–1463
https://doi.org/10.1007/s00203-018-1560-9
54 K, Won H, Singh H T T, Ngo H, Son M, Kook K Y, Kim T H Yi. Rhodanobacter koreensis sp. nov., a bacterium isolated from tomato rhizosphere. International Journal of Systematic and Evolutionary Microbiology , 2015, 65( Pt_4): 1180–1185
https://doi.org/10.1099/ijs.0.000077
55 R H, Dahal J Kim. Rhodanobacter humi sp. nov., an acid-tolerant and alkalitolerant gammaproteobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology , 2017, 67( 5): 1185–1190
https://doi.org/10.1099/ijsem.0.001786
56 C S, Lee K K, Kim Z, Aslam S T Lee. Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. International Journal of Systematic and Evolutionary Microbiology , 2007, 57( 8): 1775–1779
https://doi.org/10.1099/ijs.0.65086-0
57 O, Prakash S J, Green P, Jasrotia W A, Overholt A, Canion D B, Watson S C, Brooks J E Kostka. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. International Journal of Systematic and Evolutionary Microbiology , 2012, 62( Pt_10): 2457–2462
https://doi.org/10.1099/ijs.0.035840-0
58 Y M, Huang D, Straub N, Blackwell A, Kappler S Kleindienst. Meta-omics Reveal Gallionellaceae and Rhodanobacter species as interdependent key players for Fe(II) oxidation and nitrate reduction in the autotrophic enrichment culture KS. Applied and Environmental Microbiology , 2021, 87( 15): e00496-21
https://doi.org/10.1128/AEM.00496-21
59 D, Barcytė J, Pilátová P, Mojzeš L Nedbalová. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. Journal of Phycology , 2020, 56( 1): 217–232
https://doi.org/10.1111/jpy.12931
60 A Oren. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Frontiers in Microbiology , 2013, 4 : 315
https://doi.org/10.3389/fmicb.2013.00315
61 Y, Fukunaga M, Kurahashi K, Yanagi A, Yokota S Harayama. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. International Journal of Systematic and Evolutionary Microbiology , 2008, 58( 11): 2597–2601
https://doi.org/10.1099/ijs.0.65589-0
62 da Rocha U, Nunes C M, Plugge I, George Elsas J D, van Overbeek L S van. The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLoS One , 2013, 8( 12): e82443
https://doi.org/10.1371/journal.pone.0082443
63 N, Rosenzweig J M, Bradeen Z J, Tu S J, McKay L L Kinkel. Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure. Canadian Journal of Microbiology , 2013, 59( 7): 494–502
https://doi.org/10.1139/cjm-2012-0661
64 N Fierer. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews: Microbiology , 2017, 15( 10): 579–590
https://doi.org/10.1038/nrmicro.2017.87
65 A, Schmalenberger S, Hodge A, Bryant M J, Hawkesford B K, Singh M A Kertesz. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environmental Microbiology , 2008, 10( 6): 1486–1500
https://doi.org/10.1111/j.1462-2920.2007.01564.x
66 V J, Carrión J, Perez-Jaramillo V, Cordovez V, Tracanna Hollander M, de D, Ruiz-Buck L W, Mendes Ijcken W F J, van R, Gomez-Exposito S S, Elsayed P, Mohanraju A, Arifah der Oost J, van J N, Paulson R, Mendes Wezel G P, van M H, Medema J M Raaijmakers. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science , 2019, 366( 6465): 606–612
https://doi.org/10.1126/science.aaw9285
67 S, Sharma S, Kumar A, Khajuria P, Ohri R, Kaur R Kaur. Biocontrol potential of chitinases produced by newly isolated Chitinophaga sp. S167. World Journal of Microbiology & Biotechnology , 2020, 36( 6): 90
https://doi.org/10.1007/s11274-020-02864-9
68 J, Hu V L, Jin J Y M, Konkel S M, Schaeffer L G, Schneider J M DeBruyn. Soil health management enhances microbial nitrogen cycling capacity and activity. MSphere , 2021, 6( 1): e01237-20
https://doi.org/10.1128/mSphere.01237-20
69 M, Dong Z, Yang G, Cheng L, Peng Q, Xu J Xu. Diversity of the bacterial microbiome in the roots of four Saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum . Frontiers in Microbiology , 2018, 9: 267
70 L, Lin Z, Li C, Hu X, Zhang S, Chang L, Yang Y, Li Q An. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes and Environments , 2012, 27( 4): 391–398
https://doi.org/10.1264/jsme2.ME11275
71 Silva P R A, da J L, Simões-Araújo M S, Vidal L M, Cruz Souza E M, de J I Baldani. Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium. Brazilian Journal of Microbiology , 2018, 49( 2): 210–211
https://doi.org/10.1016/j.bjm.2017.07.005
72 P R, Bernabeu S S, García A C, López S A, Vio N, Carrasco J L, Boiardi M F Luna. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity. World Journal of Microbiology & Biotechnology , 2018, 34( 6): 81
https://doi.org/10.1007/s11274-018-2461-4
73 Y, Liu L, Wu X, Wu H, Li Q, Liao X, Zhang Z, Sun W Li. Analysis of microbial diversity in soil under ginger cultivation. Scientifica , 2017, 2017 : 8256865
https://doi.org/10.1155/2017/8256865
74 C, Liu H, Lin B, Li Y, Dong T Yin. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety , 2020, 202 : 110958
https://doi.org/10.1016/j.ecoenv.2020.110958
75 H, Lin C, Liu B, Li Y Dong. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials , 2021, 402 : 123829
https://doi.org/10.1016/j.jhazmat.2020.123829
76 S, Rebello V K, Nathan R, Sindhu P, Binod M K, Awasthi A Pandey. Bioengineered microbes for soil health restoration: present status and future. Bioengineered , 2021, 12( 2): 12839–12853
https://doi.org/10.1080/21655979.2021.2004645
[1] Ting LUO, Prakash LAKSHMANAN, Zhongfeng ZHOU, Yuchi DENG, Yan DENG, Linsheng YANG, Dongliang HUANG, Xiupeng SONG, Xihui LIU, Wen-Feng CONG, Jianming WU, Xinping CHEN, Fusuo ZHANG. SUSTAINABLE SUGARCANE CROPPING IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 272-283.
[2] Caihua SHI, Linlin SHI, Qingjun WU, Shaoli WANG, Baoyun XU, Youjun ZHANG. EFFECT OF SOLARIZATION TO KILL BRADYSIA CELLARUM ON CHINESE CHIVE GROWTH AND SOIL MICROBIAL DIVERSITY[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 52-62.
[3] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[4] Qi WANG, Zhanxiang SUN, Wei BAI, Dongsheng ZHANG, Yue ZHANG, Ruonan WANG, Wopke VAN DER WERF, Jochem B. EVERS, Tjeerd-Jan STOMPH, Jianping GUO, Lizhen ZHANG. LIGHT INTERCEPTION AND USE EFFICIENCY DIFFER WITH MAIZE PLANT DENSITY IN MAIZE-PEANUT INTERCROPPING[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 432-446.
[5] Antoine MESSÉAN, Loïc VIGUIER, Lise PARESYS, Jean-Noël AUBERTOT, Stefano CANALI, Pietro IANNETTA, Eric JUSTES, Alison KARLEY, Beatrix KEILLOR, Laura KEMPER, Frédéric MUEL, Barbara PANCINO, Didier STILMANT, Christine WATSON, Helga WILLER, Raúl ZORNOZA. ENABLING CROP DIVERSIFICATION TO SUPPORT TRANSITIONS TOWARD MORE SUSTAINABLE EUROPEAN AGRIFOOD SYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 474-480.
[6] Wopke VAN DER WERF, Lizhen ZHANG, Chunjie LI, Ping CHEN, Chen FENG, Zhan XU, Chaochun ZHANG, Chunfeng GU, Lammert BASTIAANS, David MAKOWSKI, TjeerdJan STOMPH. COMPARING PERFORMANCE OF CROP SPECIES MIXTURES AND PURE STANDS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 481-489.
[7] Henrik HAUGGAARD-NIELSEN, Søren LUND, Ane K. AARE, Christine A. WATSON, Laurent BEDOUSSAC, Jean-Noël AUBERTOT, Iman R. CHONGTHAM, Natalia BELLOSTAS, Cairistiona F. E. TOPP, Pierre HOHMANN, Erik S. JENSEN, Maureen STADEL, Bertrand PINEL, Eric JUSTES. TRANSLATING THE MULTI-ACTOR APPROACH TO RESEARCH INTO PRACTICE USING A WORKSHOP APPROACH FOCUSING ON SPECIES MIXTURES[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 460-473.
[8] Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG. The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage[J]. Front. Agr. Sci. Eng. , 2019, 6(2): 162-171.
[9] Shasha JI, Ling TONG, Fusheng LI, Hongna LU, Sien LI, Taisheng DU, Youjie WU. Effect of a new antitranspirant on the physiology and water use efficiency of soybean under different irrigation rates in an arid region[J]. Front. Agr. Sci. Eng. , 2017, 4(2): 155-164.
[10] Yuanmei ZUO, Zhenjiao ZHANG, Caihong LIU, Weina ZHANG. Achieving food security and high production of bioenergy crops through intercropping with efficient resource use in China[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed