Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.
REVIEW
SEQUESTERING ORGANIC CARBON IN SOILS THROUGH LAND USE CHANGE AND AGRICULTURAL PRACTICES: A REVIEW
Lianhai WU()
Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
 Download: PDF(2279 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Either increasing C input to or reducing C release from soils can enhance soil C sequestration.

● Afforestation and reforestation have great potential in improving soil C sequestration.

● Long-term observations about the impacts of biochar on soil C sequestration are necessary.

Climate change vigorously threats human livelihoods, places and biodiversity. To lock atmospheric CO2 up through biological, chemical and physical processes is one of the pathways to mitigate climate change. Agricultural soils have a significant carbon sink capacity. Soil carbon sequestration (SCS) can be accelerated through appropriate changes in land use and agricultural practices. There have been various meta-analyses performed by combining data sets to interpret the influences of some methods on SCS rates or stocks. The objectives of this study were: (1) to update SCS capacity with different land-based techniques based on the latest publications, and (2) to discuss complexity to assess the impacts of the techniques on soil carbon accumulation. This review shows that afforestation and reforestation are slow processes but have great potential for improving SCS. Among agricultural practices, adding organic matter is an efficient way to sequester carbon in soils. Any practice that helps plant increase C fixation can increase soil carbon stock by increasing residues, dead root material and root exudates. Among the improved livestock grazing management practices, reseeding grasses seems to have the highest SCS rate.

Keywords agroecosystems      climate change      negative emissions technology      net zero     
Corresponding Author(s): Lianhai WU   
Just Accepted Date: 28 November 2022   Online First Date: 13 January 2023   
 Cite this article:   
Lianhai WU. SEQUESTERING ORGANIC CARBON IN SOILS THROUGH LAND USE CHANGE AND AGRICULTURAL PRACTICES: A REVIEW[J]. Front. Agr. Sci. Eng. , 13 January 2023. [Epub ahead of print] doi: 10.15302/J-FASE-2022474.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022474
https://academic.hep.com.cn/fase/EN/Y/V/I/0
Fig.1  Change in global surface temperature relative to 1951−1980 average temperatures (black line) and monthly atmospheric carbon dioxide concentrations observed at NOAA Mauna Loa Observatory in Hawaii (red line). The blue line is the smoothed conditional means with the 95% confidence band indicated by the gray area. Data sourced from Global Monitoring Laboratory website for CO2 concentrations[2] and Global Climate Change website for temperature[3].
Fig.2  Carbon cycling through plants, animals, and soils. Downward arrows indicate carbon input to soils through plant dead materials, animal excreta and external sources.
Climate Location Conversion Age after conversion (year) Soil depth (cm) Rate (Mg·ha−1·yr−1 C)
Afforestation
Worldwide review Agriculture > 8 0.34[19]
Worldwide review Grassland > 6 0.33[19]
Worldwide review > 30 30 0.32[20]
Worldwide review Agriculture < 1011–2021–30> 30 60 –0.19[26]0.531.100.57
Worldwide review Grassland < 1011–2021–30> 30 60 –0.34[26]–0.960.060.64
China review Agriculture < 10 20 –0.04[27]
China review Agriculture 11–20 20 1.35[27]
China review Semi-natural grassland < 10 20 nc[27]
China review Semi-natural grassland 11–20 20 0.86[27]
Harpenden, UK Agriculture to wild woodland > 110 69 0.38–0.54[28]
Humid continental Michigan, USA Agriculture to deciduous and conifer 53 100 0.26–0.35[29]
Temperate semiarid Sierra de Carrascoy, Spain Shrublands to conifers 20 5 0.17–0.28[30]
Mid-latitude steppe Qinghai, China Agriculture 9–31 60 1.13–1.38[31]
Temperate semiarid Shaanxi, China Agriculture to deciduous 39 100 0.63–1.86[32]
Temperate semiarid Shaanxi, China Agriculture to shrublands 38 100 0.63–1.78[32]
Humid continental South-east Lithuania Agriculture to woodland 20 28 0.05[33]
Humid continental South-east Lithuania Agriculture to conifers 20 28 –0.18[33]
Subpolar oceanic Iceland Natural grassland to deciduous 15–50 30 0.42[34]
BorealTemperate Sweden Agriculture to mixed species 98 30 –3.02 to 2.3[35]–1.91 to 0.79
Subhumid Mediterranean North-east Spain Agriculture to orchards 60 30 0.42[36]
Humid continental Czech Agriculture to mixed species 14 20 –0.01 to 0.95[37]
Reforestation
Temperate humid continental Kentucky, USA Mined soils to deciduous 15 50 1.7[38]
Arid hot climate South-west China Abandoned soils to mixed species 30 80 1.28[39]
Tab.1  Soil carbon sequestration rate by afforestation and reforestation (summaries from the literature and other sources as indicated)
From/To Arable Grassland Bioenergy (Semi-)natural grassland Agroforestry Forest
From arable x −0.89 to 1.00[6668] −2.27[69] 4.55−6.75[70] −1.74 to −0.60[6668]
To grassland 0.16−0.92[6668,71,72] x − 0.04 to 0.27[69,71] 0.21−16.9[70] −0.10 to 0.68[66,67]
From bioenergy 1.02−1.09[73] –0.67 to 0.33[73,74] x − 5.2 to −1.22[75,76] − 4.04[73]
From (semi-)natural grassland 0.128[72] 0.031 [77] x − 0.17[78]
From agroforestry –0.17 to 0.29[79,80] −2.07[69] x 0.9−5.6[81]
From forest −0.28 to 1.40[6668] –1.28 to 0.43[68,79] −0.09 to −0.061[82] x
Tab.2  Impacts of land use change on soil carbon sequestration rate (Mg·ha−1·yr−1 C)
Practice Location System Period (year) Soil depth (cm) Rate
NT vs ST Global review > 6 Not specified 0.17[94]
Reduced tillage vs ST Global review > 6 Not specified –0.06[94]
NT vs ST UK review 2−23 30 0.31[95]
NT vs ST Central USA review 7−100 20 0.27[96]
NT vs ST central USA review 5−30 30 0.45[96]
NT vs ST, 240 kg·ha–1·yr–1 urea-N & P Quzhou, China Wheat-maize 34 20 0.5[97]
NT vs ST, 2.25 Mg·ha−1·yr−1 straw mulch, 240 kg·ha–1·yr–1 urea-N & P Quzhou, China Wheat-maize 34 20 0.92[97]
NT vs ST, 4.5 Mg·ha−1·yr−1 straw mulch, 240 kg·ha–1·yr–1 urea-N & P Quzhou, China Wheat-maize 34 20 0.68[97]
NT vs ST, flatbed planting, 260 kg·ha–1·yr–1 urea-N, P & K Tripura (W), India Maize-maize-pea 2 30 0.53[98]
NT vs ST, 80 (40 for rotation) kg·ha–1·yr–1 N Madrid, Spain Winter wheat and wheat-vetch 32 20 0.36[99]
NT vs ST, straw mulch (NT) or incorporated (ST), 0, 60 or 120 kg·ha–1·yr–1 N, P & K Catalonia, NE Spain Barley 13 40 0.18[100]
NT vs ST, fertilizer rates and forms varied Lopburi, Thailand Maize-mung bean 5 15 −0.06[101]
NT vs ST, ridge and furrow planting, 260 kg·ha–1·yr–1 urea-N, P & K Tripura (W), India Maize-maize-pea 2 30 0.2[98]
Straw mulch vs removal, NT, 340 kg·ha–1·yr–1 urea-N, P & K Tai’an, China Wheat-peanut 3 30 0.38[102]
NT (straw mulch) vs ST (SR), 340 kg ·ha–1·yr–1 urea-N, P & K Tai’an, China Wheat-peanut 3 30 –0.85[102]
RT vs ST, SR, 340 kg·ha–1·yr–1 urea-N, P & K Tai’an, China Wheat-peanut 3 30 –0.6[102]
Mineral fertilizer (200 kg·ha–1·yr–1 urea-N, P & K) vs no fertilizer Gongzhuling, China Maize 6 20 0.4[103]
Mineral fertilizer plus SR (3.2 Mg·ha–1·yr–1 C) vs mineral fertilizer (200 kg·ha–1·yr–1 urea-N, P & K) Gongzhuling, China Maize 6 20 0.4[103]
Mineral fertilizer plus compost (3.2 Mg·ha–1·yr–1 C) vs mineral fertilizer (200 kg·ha–1·yr–1 urea-N, P & K) Gongzhuling, China Maize 6 20 0.85[103]
Mineral fertilizer plus biochar (3.2 Mg·ha–1·yr–1 C) vs mineral fertilizer (200 kg·ha–1·yr–1 urea-N, P & K) Gongzhuling, China Maize 6 20 2.07[103]
Organic fertilizer (2.8 Mg·ha−1·yr−1 C & 47.2 kg·ha−1·yr−1 N) vs no fertilizer Gujarat, India Groundnut 16 100 0.63[104]
Organic (1.98 Mg·ha−1·yr−1 C & 15.6 kg·ha−1·yr−1 N) plus inorganic fertilizers (15.6 kg·ha−1·yr−1 N) vs no fertilizer Gujarat, India Groundnut 16 100 0.43[104]
Inorganic fertilizer (20:40:40 kg·ha−1·yr−1 N: P2O5:K2O) vs no fertilizer Gujarat, India Groundnut 16 100 0.1[104]
Cattle slurry (240 kg·ha−1·yr−1 N) vs no input, P, K & S applied Kiel, Germany Continuous silage maize 8 30 0.1[105]
Cattle slurry (160 kg·ha−1·yr−1 N) vs no input, P, K & S applied Kiel, Germany Oats-wheat-pulses rotation 8 30 0.3[105]
Cattle slurry (160 kg·ha−1·yr−1 N) vs no input, P, K & S applied Kiel, Germany Maize/oats-wheat-ley rotation 8 30 0.4[105]
Organic fertilizer (15 Mg·ha−1·yr−1) vs no fertilizer, P, K, rotation with 100% cereal, SR from barley and rye Berlin, Germany Barley-barley-rye-oats 24 20 0.1[106]
Organic fertilizer (15 Mg·ha−1·yr−1) vs no fertilizer, P, K, rotation with 75% cereal, SR from barley and rye Berlin, Germany Beets-barley-rye-rye 24 20 nc[106]
Organic fertilizer (15 Mg·ha−1·yr−1) vs no fertilizer, P, K, rotation with 50% cereal, RR from barley and rye Berlin, Germany Beets-barley-rye-silage maize 24 20 0.03[106]
Straw incorporated (2.25 Mg·ha−1·yr−1) vs no straw, ST, 240 kg·ha–1·yr–1 urea-N & P Quzhou, China Wheat-maize 34 20 1.76[97]
Straw incorporated (4.5 Mg·ha−1·yr−1) vs no straw, ST, 240 kg·ha–1·yr–1 urea-N & P Quzhou, China Wheat-maize 34 20 2.44[97]
Straw mulch vs no organic matter input, fertilizer rates and forms varied Lopburi, Thailand Maize-mung bean 5 15 0.39[101]
SR vs straw removal, irrigation and inorganic fertilisers (352.5:82.2:146.3 kg·ha−1·yr−1 N:P:K) Shaanxi, China Wheat-maize 25 20 0.11[107]
Irrigation vs rainfed, no fertilizer Shaanxi, China Wheat-maize 25 20 0.03[107]
Rotation vs continuous Global review 25 (Average) 22 (Average) 0.15[16]
With vs without catch crop Argentina Soybean 8 20 0.09− 0.39[108]
Tab.3  Soil carbon sequestration rate (Mg·ha−1·yr−1 C) by Agricultural practices (summaries from the literature review and other sources as indicated)
Climate Type Practices Length (year) Depth (cm) Rate
Worldwide review Grassland Mineral fertilizer 0.54[71]
Worldwide review Grassland Organic fertilizer 0.84[71]
Worldwide review Grassland Introducing legumes 0.66[71]
Worldwide review Grassland Improved grass species 3.04[142]
Semi-arid tropical savannah Rangeland Managed (grazing in dry season) vs unmanaged 30 12.1%–22.2%[146]
Semi-arid tropical savannah Rangeland Managed (grazing in wet season) vs unmanaged 30 nc[146]
Arid and semiarid Rangeland Grazing exclusion vs grazing 6 20 26.9%[147]
Arid and semiarid Rangeland Grazing exclusion vs grazing > 1 30 0.23[148]
Cold desert Rangeland Grazing exclusion vs grazing 4 20 49%[149]
Cold steppe Grassland Grazing exclusion vs light grazing 12 30 −15.6%[150]
Cold steppe Grassland Grazing exclusion vs heavy grazing 12 30 14.1%[150]
Cold semi-arid Grassland Grazing exclusion vs light grazing 55 30 49.4%[150]
Cold semi-arid Grassland Grazing exclusion vs heavy grazing 55 30 46.9%[150]
Temperate Grassland Fertilized P vs non application > 20 60 25.5%[151]
Temperate Grassland Multiple sward (5 species) 9 30 1.6[152]
Temperate Grassland Multiple sward (2 species) 9 30 0.44[152]
Semiarid Rangeland Grazing exclusion > 75 60 0.128[153]
Semiarid Rangeland Light grazing (0.78 sheep Eq ha−1) > 75 60 0.097[153]
Semiarid Rangeland Heavy grazing (1.18 sheep Eq ha−1) > 75 60 0.093[153]
Tab.4  Soil carbon sequestration rates (as Mg·ha−1·yr−1 C or percentage change) for various livestock practices (summaries from the literature and other sources as indicated)
1 Panel on Climate Change (IPCC) Intergovernmental . Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report. Cambridge: Cambridge University Press, 2021
2 Monitoring Laboratory (GML) Global . Trends in atmospheric carbon dioxide. Available at GML website on November 19, 2022
3 Climate Change (GCC) Global . Global land-ocean temperature index. Available at GCC website on November 19, 2022
4 P, Smith S J, Davis F, Creutzig S, Fuss J, Minx B, Gabrielle E, Kato R B, Jackson A, Cowie E, Kriegler Vuuren D P, van J, Rogelj P, Ciais J, Milne J G, Canadell D, McCollum G, Peters R, Andrew V, Krey G, Shrestha P, Friedlingstein T, Gasser A, Grübler W K, Heidug M, Jonas C D, Jones F, Kraxner E, Littleton J, Lowe J R, Moreira N, Nakicenovic M, Obersteiner A, Patwardhan M, Rogner E, Rubin A, Sharifi A, Torvanger Y, Yamagata J, Edmonds C Yongsung . Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6(1): 42–50
https://doi.org/10.1038/nclimate2870
5 K, Anderson G Peters . The trouble with negative emissions. Science, 2016, 354(6309): 182–183
https://doi.org/10.1126/science.aah4567 pmid: 27738161
6 S, Fuss C D, Jones F, Kraxner G P, Peters P, Smith M, Tavoni Vuuren D P, van J G, Canadell R B, Jackson J, Milne J R, Moreira N, Nakicenovic A, Sharifi Y Yamagata . Research priorities for negative emissions. Environmental Research Letters, 2016, 11(11): 115007
https://doi.org/10.1088/1748-9326/11/11/115007
7 J Shepherd . Geoengineering the climate: science, governance and uncertainty. The Royal Society, 2009
8 J C, Minx W F, Lamb M W, Callaghan S, Fuss J, Hilaire F, Creutzig T, Amann T, Beringer Oliveira Garcia W, de J, Hartmann T, Khanna D, Lenzi G, Luderer G F, Nemet J, Rogelj P, Smith Vicente J L, Vicente J, Wilcox Mar Zamora Dominguez M del . Negative emissions—Part 1: research landscape and synthesis. Environmental Research Letters, 2018, 13(6): 063001
https://doi.org/10.1088/1748-9326/aabf9b
9 S, Fuss W F, Lamb M W, Callaghan J, Hilaire F, Creutzig T, Amann T, Beringer Oliveira Garcia W, de J, Hartmann T, Khanna G, Luderer G F, Nemet J, Rogelj P, Smith J L V, Vicente J, Wilcox Mar Zamora Dominguez M, del J C Minx . Negative emissions—Part 2: costs, potentials and side effects. Environmental Research Letters, 2018, 13(6): 063002
https://doi.org/10.1088/1748-9326/aabf9f
10 G F, Nemet M W, Callaghan F, Creutzig S, Fuss J, Hartmann J, Hilaire W F, Lamb J C, Minx S, Rogers P Smith . Negative emissions—Part 3: innovation and upscaling. Environmental Research Letters, 2018, 13(6): 063003
https://doi.org/10.1088/1748-9326/aabff4
11 C, Hepburn E, Adlen J, Beddington E A, Carter S, Fuss Dowell N, Mac J C, Minx P, Smith C K Williams . The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575(7781): 87–97
https://doi.org/10.1038/s41586-019-1681-6 pmid: 31695213
12 K, Paustian O, Andrén H H, Janzen R, Lal P, Smith G, Tian H, Tiessen M, Noordwijk P L Woomer . Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 1997, 13(s4): 230–244
https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
13 R, Lal W, Negassa K Lorenz . Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 2015, 15: 79–86
https://doi.org/10.1016/j.cosust.2015.09.002
14 Panel on Climate Change (IPCC) Intergovernmental . Summary for Policymakers. In: Shukla P R, Skea J, Slade R, Khourdajie A A, Diemen R V, Mccollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J, eds. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022
15 R, Sedjo B Sohngen . Carbon sequestration in forests and soils. Annual Review of Resource Economics, 2012, 4(1): 127–144
https://doi.org/10.1146/annurev-resource-083110-115941
16 T O, West W M Post . Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 2002, 66(6): 1930–1946
https://doi.org/10.2136/sssaj2002.1930
17 A P, Madigan J, Zimmermann D J, Krol M, Williams M B Jones . Full Inversion Tillage (FIT) during pasture renewal as a potential management strategy for enhanced carbon sequestration and storage in Irish grassland soils. Science of the Total Environment, 2022, 805: 150342
https://doi.org/10.1016/j.scitotenv.2021.150342 pmid: 34818809
18 S S, Bhattacharyya F F G D, Leite C L, France A O, Adekoya G H, Ros Vries W, de E M, Melchor-Martínez H M N, Iqbal R Parra-Saldívar . Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Science of the Total Environment, 2022, 826: 154161
https://doi.org/10.1016/j.scitotenv.2022.154161 pmid: 35231506
19 W M, Post K C Kwon . Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6(3): 317–327
https://doi.org/10.1046/j.1365-2486.2000.00308.x
20 K I, Paul P J, Polglase J G, Nyakuengama P K Khanna . Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168(1−3): 241−257
21 S T, Berthrong E G, Jobbágy R B Jackson . A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 2009, 19(8): 2228–2241
https://doi.org/10.1890/08-1730.1 pmid: 20014590
22 T G, Bárcena L P, Kiær L, Vesterdal H M, Stefánsdóttir P, Gundersen B D Sigurdsson . Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Global Change Biology, 2014, 20(8): 2393–2405
https://doi.org/10.1111/gcb.12576 pmid: 24634314
23 X, Liu T, Yang Q, Wang F, Huang L Li . Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: a meta-analysis. Science of the Total Environment, 2018, 618: 1658–1664
https://doi.org/10.1016/j.scitotenv.2017.10.009 pmid: 29074238
24 Y, Guo M, Abdalla M, Espenberg A, Hastings P, Hallett P Smith . A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age. Science of the Total Environment, 2021, 757: 143824
https://doi.org/10.1016/j.scitotenv.2020.143824 pmid: 33250240
25 M J, Bell F Worrall . Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits. Science of the Total Environment, 2011, 409(9): 1704–1714
https://doi.org/10.1016/j.scitotenv.2011.01.031 pmid: 21329965
26 G, Hou C O, Delang X, Lu L Gao . Soil organic carbon storage varies with stand ages and soil depths following afforestation. Annals of Forest Research, 2019, 62(1): 3–20
https://doi.org/10.15287/afr.2018.1294
27 L, Deng Z Shangguan . Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 2017, 28(1): 151–165
https://doi.org/10.1002/ldr.2537
28 P R, Poulton E, Pye P R, Hargreaves D S Jenkinson . Accumulation of carbon and nitrogen by old arable land reverting to woodland. Global Change Biology, 2003, 9(6): 942–955
https://doi.org/10.1046/j.1365-2486.2003.00633.x
29 S J, Morris S, Bohm S, Haile-Mariam E A Paul . Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology, 2007, 13(6): 1145–1156
https://doi.org/10.1111/j.1365-2486.2007.01359.x
30 N, Garcia-Franco M, Wiesmeier M, Goberna M, Martínez-Mena J Albaladejo . Carbon dynamics after afforestation of semiarid shrublands: implications of site preparation techniques. Forest Ecology and Management, 2014, 319: 107–115
https://doi.org/10.1016/j.foreco.2014.01.043
31 S W, Shi P F, Han P, Zhang F, Ding C L Ma . The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China. PLoS One, 2015, 10(2): e0116591
https://doi.org/10.1371/journal.pone.0116591 pmid: 25706724
32 X, Han F, Zhao X, Tong J, Deng G, Yang L, Chen D Kang . Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150: 317–327
https://doi.org/10.1016/j.catena.2016.11.027
33 A, Kazlauskaite-Jadzevice L, Tripolskaja J, Volungevicius E Baksiene . Impact of land use change on organic carbon sequestration in Arenosol. Agricultural and Food Science, 2019, 28(1): 9–17
https://doi.org/10.23986/afsci.69641
34 M, Hunziker O, Arnalds N J Kuhn . Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation. Soil, 2019, 5(2): 223–238
https://doi.org/10.5194/soil-5-223-2019
35 R M, Rytter L Rytter . Carbon sequestration at land use conversion—Early changes in total carbon stocks for six tree species grown on former agricultural land. Forest Ecology and Management, 2020, 466: 118129
https://doi.org/10.1016/j.foreco.2020.118129
36 C, Juvinya H, LotfiParsa T, Sauras-Yera P, Rovira H, LotfiParsa T, Sauras-Yera P Rovira . Carbon sequestration in Mediterranean soils following afforestation of abandoned crops: biases due to changes in soil compaction and carbonate stocks. Land Degradation & Development, 2021, 32(15): 4300–4312
https://doi.org/10.1002/ldr.4037
37 J, Cukor Z, Vacek S, Vacek R, Linda V Podrázský . Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: a case study of suitability of native tree species in the submontane zone in Czechia. Catena, 2022, 210: 105893
https://doi.org/10.1016/j.catena.2021.105893
38 J F, Fox J E, Campbell P M Acton . Carbon sequestration by reforesting legacy grasslands on coal mining sites. Energies, 2020, 13(23): 6340
https://doi.org/10.3390/en13236340
39 Z, Gong Y, Tang W, Xu Z Mou . Rapid sequestration of ecosystem carbon in 30-year reforestation with mixed species in Dry Hot Valley of the Jinsha River. International Journal of Environmental Research and Public Health, 2019, 16(11): 1937
https://doi.org/10.3390/ijerph16111937 pmid: 31159262
40 K, Lorenz R Lal . Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 2014, 34(2): 443–454
https://doi.org/10.1007/s13593-014-0212-y
41 Stefano A, De M G Jacobson . Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems, 2018, 92(2): 285–299
42 L L, Shi W T, Feng J C, Xu Y Kuzyakov . Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation & Development, 2018, 29(11): 3886–3897
https://doi.org/10.1002/ldr.3136
43 B M, Shrestha S X, Chang E W, Bork C N Carlyle . Enrichment planting and soil amendments enhance carbon sequestration and reduce greenhouse gas emissions in agroforestry systems: a review. Forests, 2018, 9(6): 369
https://doi.org/10.3390/f9060369
44 R, Hübner A, Kuhnel J, Lu H, Dettmann W Q, Wang M Wiesmeier . Soil carbon sequestration by agroforestry systems in China: a meta-analysis. Agriculture, Ecosystems & Environment, 2021, 315: 107437
https://doi.org/10.1016/j.agee.2021.107437
45 S, Mayer M, Wiesmeier E, Sakamoto R, Hubner R, Cardinael A, Kuhnel I Kogel-Knabner . Soil organic carbon sequestration in temperate agroforestry systems—A meta-analysis. Agriculture, Ecosystems & Environment, 2022, 323: 107689
https://doi.org/10.1016/j.agee.2021.107689
46 D G, Kim M U F, Kirschbaum T L Beedy . Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agriculture, Ecosystems & Environment, 2016, 226: 65–78
https://doi.org/10.1016/j.agee.2016.04.011
47 Nair P K, Ramachandran V D Nair . ‘Solid-fluid-gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environmental Sustainability, 2014, 6: 22–27
https://doi.org/10.1016/j.cosust.2013.07.014
48 Nair P K, Ramachandran V D, Nair Kumar B, Mohan J M Showalter . Carbon dequestration in agroforestry systems. In: Sparks D L, ed. Advances in Agronomy. Academic Press, 2010, 108: 237–307
49 M R A, Noponen J R, Healey G, Soto J P Haggar . Sink or source—The potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agriculture, Ecosystems & Environment, 2013, 175: 60–68
https://doi.org/10.1016/j.agee.2013.04.012
50 S, Hong G, Yin S, Piao R, Dybzinski N, Cong X, Li K, Wang J, Peñuelas H, Zeng A Chen . Divergent responses of soil organic carbon to afforestation. Nature Sustainability, 2020, 3(9): 694–700
https://doi.org/10.1038/s41893-020-0557-y
51 W J, Bond N, Stevens G F, Midgley C E R Lehmann . The trouble with trees: afforestation plans for Africa. Trends in Ecology & Evolution, 2019, 34(11): 963–965
https://doi.org/10.1016/j.tree.2019.08.003 pmid: 31515117
52 J W, Veldman E, Buisson G, Durigan G W, Fernandes Stradic S, Le G, Mahy D, Negreiros G E, Overbeck R G, Veldman N P, Zaloumis F E, Putz W J Bond . Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment, 2015, 13(3): 154–162
https://doi.org/10.1890/140270
53 E G, Brockerhoff H, Jactel J A, Parrotta C P, Quine J Sayer . Plantation forests and biodiversity: oxymoron or opportunity. Biodiversity and Conservation, 2008, 17(5): 925–951
https://doi.org/10.1007/s10531-008-9380-x
54 E, Buscardo G F, Smith D L, Kelly H, Freitas S, Iremonger F J G, Mitchell S, O’Donoghue A M McKee . The early effects of afforestation on biodiversity of grasslands in Ireland. Biodiversity and Conservation, 2008, 17(5): 1057–1072
https://doi.org/10.1007/s10531-007-9275-2
55 L L, Bremer K A Farley . Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 2010, 19(14): 3893–3915
https://doi.org/10.1007/s10531-010-9936-4
56 Y, Li M, Zhao S, Motesharrei Q, Mu E, Kalnay S Li . Local cooling and warming effects of forests based on satellite observations. Nature Communications, 2015, 6(1): 6603
https://doi.org/10.1038/ncomms7603 pmid: 25824529
57 S S, Peng S, Piao Z, Zeng P, Ciais L, Zhou L Z X, Li R B, Myneni Y, Yin H Zeng . Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915–2919
https://doi.org/10.1073/pnas.1315126111 pmid: 24516135
58 M, Buechel L, Slater S Dadson . Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Communications Earth & Environment, 2022, 3(1): 6
https://doi.org/10.1038/s43247-021-00334-0
59 European Academies’ Science Advisory Council (EASAC). Negative emission technologies: what role in meeting Paris agreement targets? Leopoldina: German National Academy of Sciences, 2018
60 F M, Santos A L, Gonçalves J C M Pires . Negative emission technologies. In: Magalhães Pires J C, Cunha Gonçalves A L D, eds. Bioenergy with carbon capture and storage. Academic Press, 2019, 1–13
61 P, Poulton J, Johnston A, Macdonald R, White D Powlson . Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Global Change Biology, 2018, 24(6): 2563–2584
https://doi.org/10.1111/gcb.14066 pmid: 29356243
62 C, Tosh S Westaway . Agroforestry ELM Test: incentives and disincentives to the adoption of agroforestry by UK farmers: a semi-quantitative evidence review. Gloucestershire: Organic Research Centre, 2021
63 D Lamb . Reforestation. In: Levin S A, ed. Encyclopedia of Biodiversity: Second Edition. Cambridge, MA: Academic Press, 2013, 370–379
64 J G, Canadell M R Raupach . Managing forests for climate change mitigation. Science, 2008, 320(5882): 1456–1457
https://doi.org/10.1126/science.1155458 pmid: 18556550
65 Sacco A, Di K A, Hardwick D, Blakesley P H S, Brancalion E, Breman Rebola L, Cecilio S, Chomba K, Dixon S, Elliott G, Ruyonga K, Shaw P, Smith R J, Smith A Antonelli . Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27(7): 1328–1348
https://doi.org/10.1111/gcb.15498 pmid: 33494123
66 L, Deng G, Zhu Z, Tang Z Shangguan . Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 2016, 5: 127–138
https://doi.org/10.1016/j.gecco.2015.12.004
67 J J C, Dawson P Smith . Carbon losses from soil and its consequences for land-use management. Science of the Total Environment, 2007, 382(2–3): 165–190
68 C, Poeplau A, Don L, Vesterdal J, Leifeld Wesemael B, Van J, Schumacher A Gensior . Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Global Change Biology, 2011, 17(7): 2415–2427
https://doi.org/10.1111/j.1365-2486.2011.02408.x
69 V, Oso Rao B K Rajashekhar . Land use conversion in humid tropics influences soil carbon stocks and forms. Journal of Soil Science and Plant Nutrition, 2017, 17(2): 543–553
https://doi.org/10.4067/S0718-95162017005000039
70 G L, Hou C O, Delang X X, Lu L Gao . Grouping tree species to estimate afforestation-driven soil organic carbon sequestration. Plant and Soil, 2020, 455(1−2): 507−518
71 R T, Conant C E P, Cerri B B, Osborne K Paustian . Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications, 2017, 27(2): 662–668
https://doi.org/10.1002/eap.1473 pmid: 27875004
72 S, Wang A, Wilkes Z, Zhang X, Chang R, Lang Y, Wang H Niu . Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agriculture, Ecosystems & Environment, 2011, 142(3−4): 329−340
73 Z, Qin J B, Dunn H, Kwon S, Mueller M M Wander . Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. Global Change Biology. Bioenergy, 2016, 8(1): 66–80
https://doi.org/10.1111/gcbb.12237
74 A J, Holder J, Clifton-Brown R, Rowe P, Robson D, Elias M, Dondini N P, McNamara I S, Donnison J P McCalmont . Measured and modelled effect of land-use change from temperate grassland to Miscanthus on soil carbon stocks after 12 years. Global Change Biology. Bioenergy, 2019, 11(10): 1173–1186
https://doi.org/10.1111/gcbb.12624 pmid: 31598141
75 Z M, Harris G, Alberti M, Viger J R, Jenkins R, Rowe N P, McNamara G Taylor . Land-use change to bioenergy: grassland to short rotation coppice willow has an improved carbon balance. Global Change Biology. Bioenergy, 2017, 9(2): 469–484
https://doi.org/10.1111/gcbb.12347
76 J P, McCalmont N P, McNamara I S, Donnison K, Farrar J C Clifton-Brown . An interyear comparison of CO2 flux and carbon budget at a commercial-scale land-use transition from semi-improved grassland to Miscanthus × giganteus. Global Change Biology. Bioenergy, 2017, 9(1): 229–245
https://doi.org/10.1111/gcbb.12323
77 I C, Burke W K, Lauenroth D P Coffin . Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program. Ecological Applications, 1995, 5(3): 793–801
https://doi.org/10.2307/1941987
78 S E, Trumbore E A, Davidson Camargo P B, de D C, Nepstad L A Martinelli . Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 1995, 9(4): 515–528
https://doi.org/10.1029/95GB02148
79 M A Upson . The carbon storage benefits of agroforestry and farm woodlands. Dissertation for the Doctoral Degree. Cranfield: Cranfield University, 2014
80 R, Cardinael T, Chevallier A, Cambou C, Béral B G, Barthès C, Dupraz C, Durand E, Kouakoua C Chenu . Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agriculture, Ecosystems & Environment, 2017, 236: 243–255
https://doi.org/10.1016/j.agee.2016.12.011
81 B R, Singh A D, Wele R Lal . Soil carbon sequestration under chronosequences of agroforestry and agricultural lands in Southern Ethiopia. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, 2010
82 J J Brejda . Soil changes following 18 years of protection from grazing in Arizona Chaparral. Southwestern Naturalist, 1997, 42(4): 478–487
83 S Perryman . Broadbalk wilderness accumulation of organic carbon. Rothamsted Research, 2015
84 Research Rothamsted . Broadbalk soil organic carbon content 1843–2015. Rothamsted Research, 2021
85 D A, Fornara R, Olave P, Burgess A, Delmer M, Upson J McAdam . Land use change and soil carbon pools: evidence from a long-term silvopastoral experiment. Agroforestry Systems, 2018, 92(4): 1035–1046
https://doi.org/10.1007/s10457-017-0124-3
86 M R, Beckert P, Smith A, Lilly S J Chapman . Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agroforestry Systems, 2016, 90(3): 371–383
https://doi.org/10.1007/s10457-015-9860-4
87 L B, Guo R M Gifford . Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 2002, 8(4): 345–360
https://doi.org/10.1046/j.1354-1013.2002.00486.x
88 Straaten O, van M D, Corre K, Wolf M, Tchienkoua E, Cuellar R B, Matthews E Veldkamp . Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 9956–9960
https://doi.org/10.1073/pnas.1504628112 pmid: 26217000
89 W M, Post R C, Izaurralde J D, Jastrow B A, McCarl J E, Amonette V L, Bailey P M, Jardine T O, West J Zhou . Enhancement of carbon sequestration in US soils. Bioscience, 2004, 54(10): 895–908
https://doi.org/10.1641/0006-3568(2004)054[0895:EOCSIU]2.0.CO;2
90 J, Schahczenski H Hill . Agriculture, climate change and carbon sequestration. NCAT, 2009
91 R Lal . Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123(1−2): 1−22
92 B, Minasny B P, Malone A B, McBratney D A, Angers D, Arrouays A, Chambers V, Chaplot Z S, Chen K, Cheng B S, Das D J, Field A, Gimona C B, Hedley S Y, Hong B, Mandal B P, Marchant M, Martin B G, McConkey V L, Mulder S, O’Rourke A C, Richer-de-Forges I, Odeh J, Padarian K, Paustian G, Pan L, Poggio I, Savin V, Stolbovoy U, Stockmann Y, Sulaeman C C, Tsui T G, Vågen Wesemael B, van L Winowiecki . Soil carbon 4 per mille. Geoderma, 2017, 292: 59–86
https://doi.org/10.1016/j.geoderma.2017.01.002
93 E, Aguilera L, Lassaletta A, Gattinger B S Gimeno . Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2013, 168: 25–36
https://doi.org/10.1016/j.agee.2013.02.003
94 X, Bai Y, Huang W, Ren M, Coyne P A, Jacinthe B, Tao D, Hui J, Yang C Matocha . Responses of soil carbon sequestration to climate-smart agriculture practices: a meta-analysis. Global Change Biology, 2019, 25(8): 2591–2606
https://doi.org/10.1111/gcb.14658 pmid: 31002465
95 D S, Powlson A, Bhogal B J, Chambers K, Coleman A J, Macdonald K W T, Goulding A P Whitmore . The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agriculture, Ecosystems & Environment, 2012, 146(1): 23–33
https://doi.org/10.1016/j.agee.2011.10.004
96 J M F, Johnson D C, Reicosky R R, Allmaras T J, Sauer R T, Venterea C J Dell . Greenhouse gas contributions and mitigation potential of agriculture in the central USA. Soil & Tillage Research, 2005, 83(1): 73–94
https://doi.org/10.1016/j.still.2005.02.010
97 K, Zhu H, Ran F, Wang X, Ye L, Niu R, Schulin G Wang . Conservation tillage facilitated soil carbon sequestration through diversified carbon conversions. Agriculture, Ecosystems & Environment, 2022, 337: 108080
https://doi.org/10.1016/j.agee.2022.108080
98 G S, Yadav A, Das S, Babu K P, Mohapatra R, Lal D Rajkhowa . Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. International Soil and Water Conservation Research, 2021, 9(2): 279–290
https://doi.org/10.1016/j.iswcr.2020.12.003
99 R, Bienes M J, Marques B, Sastre A, García-Díaz I, Esparza O, Antón L, Navarrete J L, Hernánz V, Sánchez-Girón del Arco M J, Sánchez R Alarcón . Tracking changes on soil structure and organic carbon sequestration after 30 years of different tillage and management practices. Agronomy, 2021, 11(2): 291
https://doi.org/10.3390/agronomy11020291
100 , Pareja-Sánchez C, Cantero-Martinez J, Alvaro-Fuentes D Plaza-Bonilla . Soil organic carbon sequestration when converting a rainfed cropping system to irrigated corn under different tillage systems and N fertilizer rates. Soil Science Society of America Journal, 2020, 84(4): 1219–1232
https://doi.org/10.1002/saj2.20116
101 N, Matsumoto W, Nobuntou N, Punlai T, Sugino P, Rujikun S, Luanmanee K Kawamura . Soil carbon sequestration on a maize-mung bean field with rice straw mulch, no-tillage, and chemical fertilizer application in Thailand from 2011 to 2015. Soil Science and Plant Nutrition, 2021, 67(2): 190–196
https://doi.org/10.1080/00380768.2020.1857660
102 J, Zhao Z, Liu H, Lai D, Yang X Li . Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat-peanut rotation system. Journal of Environmental Management, 2022, 306: 114468
https://doi.org/10.1016/j.jenvman.2022.114468 pmid: 35026711
103 Y, Liang M, Al-Kaisi J C, Yuan J Z, Liu H X, Zhang L C, Wang H G, Cai J Ren . Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agriculture, Ecosystems & Environment, 2021, 314: 107403
https://doi.org/10.1016/j.agee.2021.107403
104 C, Srinivasarao S, Kundu B S, Yashavanth S, Rakesh K N, Akbari G S, Sutaria V D, Vora D S, Hirpara K A, Gopinath G R, Chary J, Prasad N S, Bolan B Venkateswarlu . Influence of 16 years of fertilization and manuring on carbon sequestration and agronomic productivity of groundnut in vertisol of semi-arid tropics of Western India. Carbon Management, 2021, 12(1): 13–24
105 Los Rios J, De A, Poyda T, Reinsch C, Kluss F, Taube R Loges . Integrating crop-livestock system practices in forage and grain-based rotations in northern Germany: potentials for soil carbon sequestration. Agronomy, 2022, 12(2): 338
https://doi.org/10.3390/agronomy12020338
106 B, Kroschewski C, Richter M, Baumecker T Kautz . Effect of crop rotation and straw application in combination with mineral nitrogen fertilization on soil carbon sequestration in the Thyrow long-term experiment Thy_D5. Plant and Soil, 2022, doi:
107 R J, Wang J X, Zhou J Y, Xie A, Khan X Y, Yang B H, Sun S L Zhang . Carbon sequestration in irrigated and rain-fed cropping systems under long-term fertilization regimes. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 941–952
https://doi.org/10.1007/s42729-020-00181-6
108 M, Beltrán J A, Galantini F, Salvagiotti P, Tognetti S, Bacigaluppo Rozas H R, Sainz M, Barraco P A Barbieri . Do soil carbon sequestration and soil fertility increase by including a gramineous cover crop in continuous soybean. Soil Science Society of America Journal, 2021, 85(5): 1380–1394
https://doi.org/10.1002/saj2.20257
109 R S, Nicoloso C W Rice . Intensification of no-till agricultural systems: an opportunity for carbon sequestration. Soil Science Society of America Journal, 2021, 85(5): 1395–1409
https://doi.org/10.1002/saj2.20260
110 B, Govaerts N, Verhulst A, Castellanos-Navarrete K D, Sayre J, Dixon L Dendooven . Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Critical Reviews in Plant Sciences, 2009, 28(3): 97–122
https://doi.org/10.1080/07352680902776358
111 Q, Feng C J, An Z, Chen Z Wang . Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renewable & Sustainable Energy Reviews, 2020, 133: 110293
https://doi.org/10.1016/j.rser.2020.110293
112 Q, Huang G B, Zhang J, Ma K F, Song X L, Zhu W Y, Shen H Xu . Dynamic interactions of nitrogen fertilizer and straw application on greenhouse gas emissions and sequestration of soil carbon and nitrogen: a 13-year field study. Agriculture, Ecosystems & Environment, 2022, 325: 107753
https://doi.org/10.1016/j.agee.2021.107753
113 S A, Khan R L, Mulvaney T R, Ellsworth C W Boast . The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 2007, 36(6): 1821–1832
https://doi.org/10.2134/jeq2007.0099 pmid: 17965385
114 K Y, Chan D P, Heenan H B So . Sequestration of carbon and changes in soil quality under conservation tillage on light-textured soils in Australia: a review. Australian Journal of Experimental Agriculture, 2003, 43(4): 325–334
https://doi.org/10.1071/EA02077
115 J A, Lake P, Kisielewski P, Hammond F Marques . Sustainable soil improvement and water use in agriculture: CCU enabling technologies afford an innovative approach. Journal of CO2 Utilization, 2019, 32:21–30
116 Parliament UK . CCm Technologies—Written Evidence (NSD0009). Available at the UK Parliament website on November 19, 2022
117 K M, Brewer A C M Gaudin . Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid croplands. Soil Biology & Biochemistry, 2020, 149: 107936
https://doi.org/10.1016/j.soilbio.2020.107936
118 L, Wu L, Wu I J, Bingham T H Misselbrook . Projected climate effects on soil workability and trafficability determine the feasibility of converting permanent grassland to arable land. Agricultural Systems, 2022, 203: 103500
https://doi.org/10.1016/j.agsy.2022.103500
119 A, Chatterjee R Lal . On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil & Tillage Research, 2009, 104(2): 270–277
https://doi.org/10.1016/j.still.2009.03.006
120 J, Lehmann J, Gaunt M Rondon . Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403–427
https://doi.org/10.1007/s11027-005-9006-5
121 A I, Osman S, Fawzy M, Farghali M, El-Azazy A M, Elgarahy R A, Fahim M I A A, Maksoud A A, Ajlan M, Yousry Y, Saleem D W Rooney . Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20(4): 2385–2485
https://doi.org/10.1007/s10311-022-01424-x pmid: 35571983
122 J, Wang Z, Xiong Y Kuzyakov . Biochar stability in soil: meta-analysis of decomposition and priming effects. Global Change Biology. Bioenergy, 2016, 8(3): 512–523
https://doi.org/10.1111/gcbb.12266
123 A, Hilscher K, Heister C, Siewert H Knicker . Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, 2009, 40(3): 332–342
https://doi.org/10.1016/j.orggeochem.2008.12.004
124 Y, Kuzyakov I, Bogomolova B Glaser . Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology & Biochemistry, 2014, 70: 229–236
https://doi.org/10.1016/j.soilbio.2013.12.021
125 T, Xie B Y, Sadasivam K R, Reddy C W, Wang K Spokas . Review of the effects of biochar amendment on soil properties and carbon sequestration. Journal of Hazardous, Toxic and Radioactive Waste, 2016, 20(1): 04015013
https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000293
126 R, Sarfraz A, Hussain A, Sabir Fekih I, Ben A, Ditta S Xing . Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—A review. Environmental Monitoring and Assessment, 2019, 191(4): 251
https://doi.org/10.1007/s10661-019-7400-9 pmid: 30919093
127 S, Majumder S, Neogi T, Dutta M A, Powel P Banik . The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management, 2019, 250: 109466
https://doi.org/10.1016/j.jenvman.2019.109466 pmid: 31487602
128 K, Lorenz R Lal . Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 2014, 177(5): 651–670
https://doi.org/10.1002/jpln.201400058
129 H Y, Gong Y F, Li S J Li . Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: a review. Global Ecology and Conservation, 2021, 26: e01449
https://doi.org/10.1016/j.gecco.2020.e01449
130 C J, Ennis A G, Evans M, Islam T K, Ralebitso-Senior E Senior . Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 2012, 42(22): 2311–2364
https://doi.org/10.1080/10643389.2011.574115
131 A, Gross T, Bromm B Glaser . Soil organic carbon sequestration after biochar application: a global meta-analysis. Agronomy, 2021, 11(12): 2474
https://doi.org/10.3390/agronomy11122474
132 X, Zhang C, Chen X, Chen P, Tao Z, Jin Z Han . Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environmental Earth Sciences, 2018, 77(5): 177
https://doi.org/10.1007/s12665-018-7359-9
133 S, Gao T H, DeLuca C C Cleveland . Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of the Total Environment, 2019, 654: 463–472
https://doi.org/10.1016/j.scitotenv.2018.11.124 pmid: 30447585
134 S Kalu . Long-term effects of biochars as a soil amendment in boreal agricultural soils. Dissertation for the Doctoral Degree. Helsinki: University of Helsinki, 2022
135 T T N, Nguyen C Y, Xu I, Tahmasbian R, Che Z, Xu X, Zhou H M, Wallace S H Bai . Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma, 2017, 288: 79–96
https://doi.org/10.1016/j.geoderma.2016.11.004
136 C, Seré H, Steinfeld J Groenewold . World livestock production systems. Food and Agriculture Organization of the United Nations, 1996
137 T, Garnett C, Godde A, Muller E, Röös P, Smith Boer I, de Ermgassen E, zu M, Herrero Middelaar C, van C, Schader Zanten H van . Grazed and confused? Oxford: Food Climate Research Network, 2017
138 M E, McSherry M E Ritchie . Effects of grazing on grassland soil carbon: a global review. Global Change Biology, 2013, 19(5): 1347–1357
https://doi.org/10.1111/gcb.12144 pmid: 23504715
139 Y, Bai M F Cotrufo . Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 2022, 377(6606): 603–608
https://doi.org/10.1126/science.abo2380 pmid: 35926033
140 B, Tessema R, Sommer K, Piikki M, Söderström S, Namirembe A, Notenbaert L, Tamene S, Nyawira B Paul . Potential for soil organic carbon sequestration in grasslands in East African countries: a review. Grassland Science, 2020, 66(3): 135–144
https://doi.org/10.1111/grs.12267
141 M B, Jones A Donnelly . Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist, 2004, 164(3): 423–439
https://doi.org/10.1111/j.1469-8137.2004.01201.x
142 R T, Conant K, Paustian E T Elliott . Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 2001, 11(2): 343–355
https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
143 R C, Byrnes D J, Eastburn K W, Tate L M Roche . A global meta-analysis of grazing impacts on soil health indicators. Journal of Environmental Quality, 2018, 47(4): 758–765
https://doi.org/10.2134/jeq2017.08.0313 pmid: 30025044
144 P L, Stanley J E, Rowntree D K, Beede M S, DeLonge M W Hamm . Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, 2018, 162: 249–258
https://doi.org/10.1016/j.agsy.2018.02.003
145 Rambaut L A, Edouard J, Vayssières A, Versini P, Salgado P, Lecomte E Tillard . 15-year fertilization increased soil organic carbon stock even in systems reputed to be saturated like permanent grassland on andosols. Geoderma, 2022, 425: 116025
https://doi.org/10.1016/j.geoderma.2022.116025
146 M A Denboba . Grazing management and carbon sequestration in the dry lowland rangelands of southern Ethiopia. Sustainable Environment, 2022, 8(1): 2046959
https://doi.org/10.1080/27658511.2022.2046959
147 S, Leu M, Ben-Eli A Mor-Mussery . Effects of grazing control on ecosystem recovery, biological productivity gains, and soil carbon sequestration in long-term degraded loess farmlands in the Northern Negev, Israel. Land Degradation & Development, 2021, 32(8): 2580–2594
https://doi.org/10.1002/ldr.3923
148 L, Deng Z P, Shangguan G L, Wu X F Chang . Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Science Reviews, 2017, 173: 84–95
https://doi.org/10.1016/j.earscirev.2017.08.008
149 S, Bagchi M E Ritchie . Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959–968
https://doi.org/10.1111/j.1461-0248.2010.01486.x pmid: 20482575
150 J D, Reeder G E Schuman . Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457–463
https://doi.org/10.1016/S0269-7491(01)00223-8 pmid: 11822725
151 E C, Coonan A E, Richardson C A, Kirkby J A, Kirkegaard M R, Amidy R J, Simpson C L Strong . Soil carbon sequestration to depth in response to long-term phosphorus fertilization of grazed pasture. Geoderma, 2019, 338: 226–235
https://doi.org/10.1016/j.geoderma.2018.11.052
152 R H, Skinner C J Dell . Yield and soil carbon sequestration in grazed pastures sown with two or five forage species. Crop Science, 2016, 56(4): 2035–2044
https://doi.org/10.2135/cropsci2015.11.0711
153 D G, Talore E H, Tesfamariam A, Hassen Toit J C O, Du K, Klampp S Jean-Francois . Long-term impacts of grazing intensity on soil carbon sequestration and selected soil properties in the arid Eastern Cape, South Africa. Journal of the Science of Food and Agriculture, 2016, 96(6): 1945–1952
https://doi.org/10.1002/jsfa.7302 pmid: 26059244
154 R, Sarkar V, Corriher-Olson C, Long A Somenahally . Challenges and potentials for soil organic carbon sequestration in forage and grazing systems. Rangeland Ecology and Management, 2020, 73(6): 786–795
https://doi.org/10.1016/j.rama.2020.04.002
155 P, Smith P J, Gregory Vuuren D, van M, Obersteiner P, Havlík M, Rounsevell J, Woods E, Stehfest J Bellarby . Competition for land. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2010, 365(1554): 2941–2957
https://doi.org/10.1098/rstb.2010.0127 pmid: 20713395
156 Academies of Sciences, National , EngineeringMedicine and . Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: National Academies Press, 2019
157 X, Zhang N, Sun L, Wu M, Xu I J, Bingham Z Li . Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment, 2016, 562: 247–259
https://doi.org/10.1016/j.scitotenv.2016.03.193 pmid: 27100005
158 L, Qiao X, Wang P, Smith J, Fan Y, Lu B, Emmett R, Li S, Dorling H, Chen S, Liu T G, Benton Y, Wang Y, Ma R, Jiang F, Zhang S, Piao C, Mϋller H, Yang Y, Hao W, Li M Fan . Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change, 2022, 12(6): 574–580
https://doi.org/10.1038/s41558-022-01376-8
159 J, Macholdt M E, Styczen A, Macdonald H P, Piepho B Honermeier . Long-term analysis from a cropping system perspective: yield stability, environmental adaptability, and production risk of winter barley. European Journal of Agronomy, 2020, 117: 126056
https://doi.org/10.1016/j.eja.2020.126056
[1] Xia LIANG, Helen SUTER, Shu Kee LAM, Charlie WALKER, Roya KHALIL, Deli CHEN. SUSTAINABLE NITROGEN MANAGEMENT IN AUSTRALIAN AGROECOSYSTEMS: CHALLENGES AND OPPORTUNITIES[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 366-372.
[2] Bing-Xin WANG, Anouschka R. HOF, Chun-Sen MA. IMPACTS OF CLIMATE CHANGE ON CROP PRODUCTION, PESTS AND PATHOGENS OF WHEAT AND RICE[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 4-18.
[3] Ian T. RILEY. A CASE FOR ASSESSING ALLOCASUARINA AND CASUARINA SPP. FOR USE IN AGROECOSYSTEM IMPROVEMENT IN SEMI-ARID AREAS WITH A FOCUS ON CENTRAL ANATOLIA, TURKEY[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 568-582.
[4] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[5] Shenggen FAN. Sustainable intensification of agriculture is key to feeding Africa in the 21st century[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 366-370.
[6] C. Wayne HONEYCUTT, Cristine L.S. MORGAN, Pipa ELIAS, Michael DOANE, John MESKO, Rob MYERS, LaKisha ODOM, Bianca MOEBIUS-CLUNE, Ron NICHOLS. Soil health: model programs in the USA[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 356-361.
[7] Rattan LAL. Managing soil quality for humanity and the planet[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 251-253.
[8] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
[9] Xiaojing WANG,Zhanhong MA,Yuying JIANG,Shouding SHI,Wancai LIU,Juan ZENG,Zhiwei ZHAO,Haiguang WANG. Modeling of the overwintering distribution of Puccinia striiformis f. sp. tritici based on meteorological data from 2001 to 2012 in China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 223-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed