Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2013, Vol. 7 Issue (5) : 745-753    https://doi.org/10.1007/s11704-013-2234-z
RESEARCH ARTICLE
Dimensionality reduction with adaptive graph
Lishan QIAO1, Limei ZHANG1, Songcan CHEN2()
1. Department of Mathematics Science, Liaocheng University, Liaocheng 252000, China; 2. Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
 Download: PDF(444 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graph-based dimensionality reduction (DR) methods have been applied successfully in many practical problems, such as face recognition, where graphs play a crucial role in modeling the data distribution or structure. However, the ideal graph is, in practice, difficult to discover. Usually, one needs to construct graph empirically according to various motivations, priors, or assumptions; this is independent of the subsequent DR mapping calculation. Different from the previous works, in this paper, we attempt to learn a graph closely linked with the DR process, and propose an algorithm called dimensionality reduction with adaptive graph (DRAG), whose idea is to, during seeking projection matrix, simultaneously learn a graph in the neighborhood of a prespecified one. Moreover, the pre-specified graph is treated as a noisy observation of the ideal one, and the square Frobenius divergence is used to measure their difference in the objective function. As a result, we achieve an elegant graph update formula which naturally fuses the original and transformed data information. In particular, the optimal graph is shown to be a weighted sum of the pre-defined graph in the original space and a new graph depending on transformed space. Empirical results on several face datasets demonstrate the effectiveness of the proposed algorithm.

Keywords Dimensionality reduction      graph construction      face recognition     
Corresponding Author(s): CHEN Songcan,Email:s.chen@nuaa.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Lishan QIAO,Limei ZHANG,Songcan CHEN. Dimensionality reduction with adaptive graph[J]. Front Comput Sci, 2013, 7(5): 745-753.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-2234-z
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I5/745
1 Duda R O, Hart P E, Stork D G. Pattern classification. Wileyinterscience , 2012
2 He X F, Niyogi P. Locality preserving projections. In: Thrun S, Saul L, Sch?lkopf B, eds. Advances in Neural Information Processing Systems 16 . Cambridge: MIT Press, 2004
3 He X F, Cai D, Yan S C, Zhang H J. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision . 2005, 1208-1213
4 Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2007, 29(1): 40-51
doi: 10.1109/TPAMI.2007.250598
5 Gao X, Wang X, Li X, Tao D. Transfer latent variable model based on divergence analysis. Pattern Recognition , 2011, 44(10): 2358-2366
doi: 10.1016/j.patcog.2010.06.013
6 Wang X, Gao X, Yuan Y, Tao D, Li J. Semi-supervised gaussian process latent variable model with pairwise constraints. Neurocomputing , 2010, 73(10): 2186-2195
doi: 10.1016/j.neucom.2010.01.021
7 Yan J, Zhang B, Liu N, Yan S, Cheng Q, Fan W, Yang Q, Xi W, Chen Z. Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Transactions on Knowledge and Data Engineering , 2006, 18(3): 320-333
doi: 10.1109/TKDE.2006.45
8 Lee J A, Verleysen M. Nonlinear dimensionality reduction. Springer, 2007
doi: 10.1007/978-0-387-39351-3
9 Magdalinos P. Linear and non linear dimensionality reduction for distributed knowledge discovery. Department of Informatics, Athens University of Economics and Business, 2011
10 Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science , 2000, 290(5500): 2319-2323
doi: 10.1126/science.290.5500.2319
11 Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science , 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323
12 Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation , 2003, 15(6): 1373-1396
doi: 10.1162/089976603321780317
13 Van-der-Maaten L, Postma E, Van-den-Herik H. Dimensionality reduction: a comparative review. Journal of Machine Learning Research , 2009, 10: 1-41
14 He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(3): 328-340
doi: 10.1109/TPAMI.2005.55
15 Yang B, Chen S. Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing , 2010, 74(1): 301-314
doi: 10.1016/j.neucom.2010.03.019
16 Samko O, Marshall A, Rosin P. Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognition Letters , 2006, 27(9): 968-979
doi: 10.1016/j.patrec.2005.11.017
17 Carreira-Perpinán M A, Zemel R S. Proximity graphs for clustering and manifold learning. Advances in Neural Information Processing Systems , 2005, 17: 225-232
18 Jebara T, Wang J, Chang S F. Graph construction and b-matching for semi-supervised learning. In: Proceedings of the 26th Annual International Conference on Machine Learning . 2009, 441-448
doi: 10.1145/1553374.1553432
19 Qiao L S, Chen S C, Tan X Y. Sparsity preserving projections with applications to face recognition. Pattern Recognition , 2010, 43(1): 331-341
doi: 10.1016/j.patcog.2009.05.005
20 Yan S, Wang H. Semi-supervised learning by sparse representation. In: Proceedings of the SIAM International Conference on Data Mining (SDM2009) . 2009, 792-801
21 Elhamifar E, Vidal R. Sparse subspace clustering. In: Proceeding of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009) . 2009, 2790-2797
doi: 10.1109/CVPR.2009.5206547
22 Qiao L, Zhang L, Chen S. An empirical study of two typical locality preserving linear discriminant analysis methods. Neurocomputing , 2010, 73(10): 1587-1594
doi: 10.1016/j.neucom.2009.10.022
23 Zhang L, Qiao L, Chen S. Graph-optimized locality preserving projections. Pattern Recognition , 2010, 43(6): 1993-2002
doi: 10.1016/j.patcog.2009.12.022
24 Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications , 2001, 109(3): 475-494
doi: 10.1023/A:1017501703105
25 Martinez A M,Kak A C. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001, 23(2): 228-233
doi: 10.1109/34.908974
26 Lee K C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(5): 684-698
doi: 10.1109/TPAMI.2005.92
27 Cai D, He X F, Han J W. Semi-supervised discriminant analysis. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007) . 2007, 1-7
28 Wu M, Yu K, Yu S, Sch?lkopf B. Local learning projections. In: Proceedings of the 24th International Conference on Machine Learning . 2007, 1039-1046
29 Magdalinos P, Doulkeridis C, Vazirgiannis M. FEDRA: a fast and efficient dimensionality reduction algorithm. In: Proceedings of the SIAM International Conference on Data Mining (SDM2009) . 2009, 509-520
[1] Jin LI, Quan CHEN, Jingwen LENG, Weinan ZHANG, Minyi GUO. Probabilistic robust regression with adaptive weights–a case study on face recognition[J]. Front. Comput. Sci., 2020, 14(5): 145314-.
[2] Yan LI, Shiguang SHAN, Ruiping WANG, Zhen CUI, Xilin CHEN. Fusing magnitude and phase features with multiple face models for robust face recognition[J]. Front. Comput. Sci., 2018, 12(6): 1173-1191.
[3] Xin LIU,Meina KAN,Wanglong WU,Shiguang SHAN,Xilin CHEN. VIPLFaceNet: an open source deep face recognition SDK[J]. Front. Comput. Sci., 2017, 11(2): 208-218.
[4] Qicong WANG,Binbin WANG,Xinjie HAO,Lisheng CHEN,Jingmin CUI,Rongrong JI,Yunqi LEI. Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern[J]. Front. Comput. Sci., 2016, 10(6): 1118-1129.
[5] Yanyan ZHANG,Jianchun ZHANG,Zhisong PAN,Daoqiang ZHANG. Multi-view dimensionality reduction via canonical random correlation analysis[J]. Front. Comput. Sci., 2016, 10(5): 856-869.
[6] Leilei YANG,Songcan CHEN. Linear discriminant analysis with worst between-class separation and average within-class compactness[J]. Front. Comput. Sci., 2014, 8(5): 785-792.
[7] Pu HUANG, Zhenmin TANG, Caikou CHEN, Xintian CHENG. Nearest-neighbor classifier motivated marginal discriminant projections for face recognition[J]. Front Comput Sci Chin, 2011, 5(4): 419-428.
[8] YANG Jian, YANG Jingyu, ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 2008, 2(3): 295-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed