Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (6) : 1118-1129    https://doi.org/10.1007/s11704-016-5024-6
RESEARCH ARTICLE
Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern
Qicong WANG,Binbin WANG,Xinjie HAO,Lisheng CHEN,Jingmin CUI,Rongrong JI,Yunqi LEI()
Department of Computer Science, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
 Download: PDF(747 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate the robustness of face recognition algorithms under the complicated variations of illumination, facial expression and posture, the advantages and disadvantages of seven typical algorithms on extracting global and local features are studied through the experiments respectively on the Olivetti Research Laboratory database and the other three databases (the three subsets of illumination, expression and posture that are constructed by selecting images from several existing face databases). By taking the above experimental results into consideration, two schemes of face recognition which are based on the decision fusion of the twodimensional linear discriminant analysis (2DLDA) and local binary pattern (LBP) are proposed in this paper to heighten the recognition rates. In addition, partitioning a face nonuniformly for its LBP histograms is conducted to improve the performance. Our experimental results have shown the complementarities of the two kinds of features, the 2DLDA and LBP, and have verified the effectiveness of the proposed fusion algorithms.

Keywords face recognition      global feature      local feature      linear discriminant analysis      local binary pattern      decision fusion     
Corresponding Author(s): Yunqi LEI   
Just Accepted Date: 22 March 2016   Online First Date: 12 June 2016    Issue Date: 11 October 2016
 Cite this article:   
Qicong WANG,Binbin WANG,Xinjie HAO, et al. Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern[J]. Front. Comput. Sci., 2016, 10(6): 1118-1129.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5024-6
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I6/1118
1 Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86
https://doi.org/10.1162/jocn.1991.3.1.71
2 Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720
https://doi.org/10.1109/34.598228
3 Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037–2041
https://doi.org/10.1109/TPAMI.2006.244
4 Shen L L, Bai L. A review on Gabor wavelets for face recognition. Pattern Analysis and Applications, 2006, 9(2): 273–292
https://doi.org/10.1007/s10044-006-0033-y
5 Makwana R M. Illumination invariant face recognition: a survey of passive methods. Procedia Computer Science, 2010, 2(1): 101–110
https://doi.org/10.1016/j.procs.2010.11.013
6 Murphy-Chutorian E, Trivedi M M. Head pose estimation in computer vision: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 607–626
https://doi.org/10.1109/TPAMI.2008.106
7 Wang H, Li S Z, Wang Y. Face recognition under varying lighting conditions using self quotient image. In: Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. 2004, 819–824
8 Zhang T, Tang Y Y, Fang B, Shang Z, Liu X. Face recognition under varying illumination using gradientfaces. IEEE Transactions on Image Processing, 2009, 18(11): 2599–2606
https://doi.org/10.1109/TIP.2009.2028255
9 Zhang D, Zhou Z H. (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1): 224–231
https://doi.org/10.1016/j.neucom.2005.06.004
10 Noushath S, Kumar G H, Shivakumara P. (2D)2LDA: an efficient approach for face recognition. Pattern Recognition, 2006, 39(7): 1396–1400
https://doi.org/10.1016/j.patcog.2006.01.018
11 Nagesh P, Li B X. A compressive sensing approach for expressioninvariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1518–1525
12 Sharma A, Al Haj M, Choi J, Davis L S, Jacobs D W. Robust pose invariant face recognition using coupled latent space discriminant analysis. Computer Vision and Image Understanding, 2012, 116(11): 1195–1110
https://doi.org/10.1016/j.cviu.2012.08.001
13 Lei Y Q, Lai H B, Li Q M. Geometric features of 3D face and recognition of it by PCA. Journal of Multimedia, 2011, 6(2): 207–216
https://doi.org/10.4304/jmm.6.2.207-216
14 Lei Y Q, Lai H B, Jiang X T. 3D face recognition by surf operator based on depth image. In: Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology. 2010, 240–244
15 Lei Y Q, Chen D J, Yuan M L, Li Q M, Shi Z X. 3D face recognition by surface classification image and PCA. In: Proceedings of the 2nd International Conference on Machine Vision. 2009, 145–149
16 Chowdhury S, Sing J K, Basu D K, Nasipuri M. Face recognition by fusing local and global discriminant features. In: Proceedings of the 2nd International Conference on Emerging Applications of Information Technology. 2011, 102–105
https://doi.org/10.1109/eait.2011.30
17 Kim C, Oh J O, Choi C H. Combined subspace method using global and local features for face recognition. In: Proceedings of the IEEE International Joint Conference on Neural Networks. 2005, 2030–2035
18 Lin D H, Tang X O. Recognize high resolution faces: from macrocosm to microcosm. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 1355–1362
19 Su Y, Shan S G, Chen X L, Gao W. Integration of global and local feature for face recognition. Journal of Software, 2010, 21(8): 1849–1862
https://doi.org/10.3724/SP.J.1001.2010.03627
20 Geng C, Jiang X. Fully automatic face recognition framework based on local and global features. Machine Vision and Applications, 2012, 24(3): 537–549
https://doi.org/10.1007/s00138-012-0423-7
21 Bai X, Rao C, Wang X G. Shape vocabulary: a robust and efficient shape representation for shape matching. IEEE Transactions on Image Processing, 2014, 23(9): 3935–3949
https://doi.org/10.1109/TIP.2014.2336542
22 Zhang M L, Wu L. Lift: multi-label learning with label-specific features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 107–120
https://doi.org/10.1109/TPAMI.2014.2339815
23 Zhang D Q, Wang Y P, Zhou L P, Yuan H, Shen D G. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 2011, 55(3): 856–867
https://doi.org/10.1016/j.neuroimage.2011.01.008
24 Pong K H, Lam K M. Multi-resolution feature fusion for face recognition. Pattern Recognition, 2014, 47(2): 556–567
https://doi.org/10.1016/j.patcog.2013.08.023
25 Cament L A, Castillo L E, Perez J P, Galdames F J, Perez C A. Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recognition, 2014, 47(2): 568–577
https://doi.org/10.1016/j.patcog.2013.09.003
26 Tang J H, Li Z C, Wang M, Zhao R Z. Neighborhood discriminant hashing for large-scale image retrieval. IEEE Transactions on Image Processing, 2015, 24(9): 2827–2840
https://doi.org/10.1109/TIP.2015.2421443
27 Li Z C, Liu J, Tang J H, Lu H Q. Robust structured subspace learning for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2085–2098
https://doi.org/10.1109/TPAMI.2015.2400461
28 Li Z C, Liu J, Yang Y, Zhou X F, Lu H Q. Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2138–2150
https://doi.org/10.1109/TKDE.2013.65
29 Wang D H, Wang X K, Kong S. Integration of multi-feature fusion and dictionary learning for face recognition. Image and Vision Computing, 2013, 31(12): 895–904
https://doi.org/10.1016/j.imavis.2013.10.002
30 Chan C H, Tahir M A, Kittler J, Matti P, Pietikainen M. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1164–1177
https://doi.org/10.1109/TPAMI.2012.199
31 Wang W H, Yang J, Xiao J W, Li S, Zhou D X. Face recognition based on deep learning. Lecture Notes in Computer Science, 2015, 8944: 812–820
https://doi.org/10.1007/978-3-319-15554-8_73
32 Sun Y, Wang X G, Tang X O. Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1891–1898
https://doi.org/10.1109/cvpr.2014.244
33 Liu M Y, Li S X, Shan S G, Chen X L. AU-inspired deep networks for facial expression feature learning. Neurocomputing, 2015, 159(1): 126–136
https://doi.org/10.1016/j.neucom.2015.02.011
34 Wang B B, Hao X J, Chen L S, Cui J M, Lei Y Q. Face recognition based on the feature fusion of 2DLDA and LBP. In: Proceedings of the 4th International Conference on Information, Intelligence, Systems and Applications. 2013, 155–158
35 Ye J P, Janardan R, Li Q. Two-dimensional linear discriminant analysis. Advances in Neural Information Processing Systems, 2004, 17: 1569–1576
36 Wang X M, Huang C, Fang X Y, Liu J G. 2DPCA vs. 2DLDA: face recognition using two-dimensional method. In: Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence. 2009, 357–360
https://doi.org/10.1109/aici.2009.491
37 Yu W X, Wang Z Z, Chen W T. A new framework to combine vertical and horizontal information for face recognition. Neurocomputing, 2009, 72(4): 1084–1091
https://doi.org/10.1016/j.neucom.2008.03.012
38 Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision. 1994, 138–142
https://doi.org/10.1109/acv.1994.341300
39 Lee K C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684–698
https://doi.org/10.1109/TPAMI.2005.92
40 Xu C H, Tan T N, Wang Y H, Quan L. Combining local features for robust nose location in 3D facial data. Pattern Recognition Letters, 2006, 27(13): 1487–1494
https://doi.org/10.1016/j.patrec.2006.02.015
41 Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. 2002, 46–51
https://doi.org/10.1109/AFGR.2002.1004130
42 Stathopoulou I O, Tsihrintzis G A. Appearance-based face detection with artificial neural networks. Intelligent Decision Technologies, 2011, 5(2): 101–111
https://doi.org/10.3233/IDT-2011-0100
[1]  Supplementary Material Download
[1] Jin LI, Quan CHEN, Jingwen LENG, Weinan ZHANG, Minyi GUO. Probabilistic robust regression with adaptive weights–a case study on face recognition[J]. Front. Comput. Sci., 2020, 14(5): 145314-.
[2] Rizwan Ahmed KHAN, Alexandre MEYER, Hubert KONIK, Saida BOUAKAZ. Saliency-based framework for facial expression recognition[J]. Front. Comput. Sci., 2019, 13(1): 183-198.
[3] Yan LI, Shiguang SHAN, Ruiping WANG, Zhen CUI, Xilin CHEN. Fusing magnitude and phase features with multiple face models for robust face recognition[J]. Front. Comput. Sci., 2018, 12(6): 1173-1191.
[4] Xiaohui TAN, Yachun FAN, Ruiliang GUO. Local features and manifold ranking coupled method for sketch-based 3D model retrieval[J]. Front. Comput. Sci., 2018, 12(5): 1000-1012.
[5] Ying-Ying XU, Li-Xiu YAO, Hong-Bin SHEN. Bioimage-based protein subcellular location prediction: a comprehensive review[J]. Front. Comput. Sci., 2018, 12(1): 26-39.
[6] Xin LIU,Meina KAN,Wanglong WU,Shiguang SHAN,Xilin CHEN. VIPLFaceNet: an open source deep face recognition SDK[J]. Front. Comput. Sci., 2017, 11(2): 208-218.
[7] Leilei YANG,Songcan CHEN. Linear discriminant analysis with worst between-class separation and average within-class compactness[J]. Front. Comput. Sci., 2014, 8(5): 785-792.
[8] Omar AL-KADI,Osama AL-KADI,Rizik AL-SAYYED,Ja’far ALQATAWNA. Road scene analysis for determination of road traffic density[J]. Front. Comput. Sci., 2014, 8(4): 619-628.
[9] Lishan QIAO, Limei ZHANG, Songcan CHEN. Dimensionality reduction with adaptive graph[J]. Front Comput Sci, 2013, 7(5): 745-753.
[10] Song WANG, Seiichi UCHIDA, Marcus LIWICKI, Yaokai FENG. Part-based methods for handwritten digit recognition[J]. Front Comput Sci, 2013, 7(4): 514-525.
[11] Pu HUANG, Zhenmin TANG, Caikou CHEN, Xintian CHENG. Nearest-neighbor classifier motivated marginal discriminant projections for face recognition[J]. Front Comput Sci Chin, 2011, 5(4): 419-428.
[12] YANG Jian, YANG Jingyu, ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 2008, 2(3): 295-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed