Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (5) : 856-869    https://doi.org/10.1007/s11704-015-4538-7
RESEARCH ARTICLE
Multi-view dimensionality reduction via canonical random correlation analysis
Yanyan ZHANG1,Jianchun ZHANG2,Zhisong PAN1(),Daoqiang ZHANG2()
1. College of Command Information Systems, PLA University of Science and Technology, Nanjing 210007, China
2. Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(539 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Canonical correlation analysis (CCA) is one of the most well-known methods to extract features from multiview data and has attracted much attention in recent years. However, classical CCA is unsupervised and does not take discriminant information into account. In this paper, we add discriminant information into CCA by using random cross view correlations between within-class samples and propose a new method for multi-view dimensionality reduction called canonical random correlation analysis (RCA). In RCA, two approaches for randomly generating cross-view correlation samples are developed on the basis of bootstrap technique. Furthermore, kernel RCA (KRCA) is proposed to extract nonlinear correlations between different views. Experiments on several multi-view data sets show the effectiveness of the proposed methods.

Keywords canonical correlation analysis      discriminant      multi-view      dimensionality reduction     
Corresponding Author(s): Zhisong PAN,Daoqiang ZHANG   
Just Accepted Date: 10 October 2015   Online First Date: 06 April 2016    Issue Date: 07 September 2016
 Cite this article:   
Yanyan ZHANG,Jianchun ZHANG,Zhisong PAN, et al. Multi-view dimensionality reduction via canonical random correlation analysis[J]. Front. Comput. Sci., 2016, 10(5): 856-869.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4538-7
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I5/856
1 Duda R O, Hart P E, Stork D G, Pattern Classification. 2nd ed. New York: Wiley-Interscience, 2000.
2 Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Lingustics. 1995, 189–196
https://doi.org/10.3115/981658.981684
3 Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(6): 1438–1446
https://doi.org/10.1109/TSMCB.2009.2039566
4 Zheng H, Wang M, Li Z. Audio-visual speaker identification with multi-view distance metric learning. In: Proceedings of 17th IEEE International Conference on Image Processing. 2010, 4561–4564
https://doi.org/10.1109/icip.2010.5653016
5 Wang M, Li H, Tao D, Lu K,Wu X. Multimodal graph-based reranking for Web image search. IEEE Transactions on Image Processing, 2012, 21(11): 4649–4661
https://doi.org/10.1109/TIP.2012.2207397
6 Yu J, Wang M, Tao D. Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Transactions on Image Processing, 2012, 21(11): 4636–4648
https://doi.org/10.1109/TIP.2012.2207395
7 Long B, Philip S Y, Zhang Z. A general model for multiple view unsupervised learning. In: Proceedings of the SIAM International Conference on Data Mining. 2008, 822–833
https://doi.org/10.1137/1.9781611972788.74
8 Han Y, Wu F, Tao D, Zhuang Y, Jiang J. Sparse unsupervised dimensionality reduction for multiple view data. IEEE Transactions on Circuits and Systems for Video Technology. 2012, 22(10): 1485–1496
https://doi.org/10.1109/TCSVT.2012.2202075
9 Xie B, Mu Y, Tao D, Huang K. m-SNE: multiview stochastic neighbor embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(4): 1088–1096
https://doi.org/10.1109/TSMCB.2011.2106208
10 Hotelling H. Relation between two sets of variates. Biometrica, 1936, 28: 321–377
https://doi.org/10.1093/biomet/28.3-4.321
11 Diethe T, Hardoon D R, Shawe-Taylor J. Multiview fisher discriminant analysis. In: Proceedings of NIPS Workshop on Learning from Multiple Sources. 2008
12 Akaho S. A kernel method for canonical correlation analysis. In: Proceedings of the International Meeting of the Psychometric Society. 2001
13 Vía J, Santamaría I, Pérez J. A learning algorithm for adaptive canonical correlation analysis of several data sets. Neural Networks. 2007, 20(1): 139–152
https://doi.org/10.1016/j.neunet.2006.09.011
14 Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 2004, 16(12): 2639–2664
https://doi.org/10.1162/0899766042321814
15 Yang C, Wang L, Feng J. On feature extraction via kernels. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2): 553–557
https://doi.org/10.1109/TSMCB.2007.913604
16 Sun T, Chen S. Locality preserving CCA with applications to data visualization and pose estimation. Image and Vision Computing, 2007, 25(5): 531–543
https://doi.org/10.1016/j.imavis.2006.04.014
17 Blaschko M B, Jacquelyn J A, Bartels A, Lampert C H, Gretton A. Semi-supervised kernel canonical correlation analysis with application to human fMRI. Pattern Recognition Letters, 2011, 32(11): 1572–1583
https://doi.org/10.1016/j.patrec.2011.02.011
18 Blaschko M B, Lampert C H, Gretton A. Semi-supervised laplacian regularization of kernel canonical correlation analysis. Lecture Notes in Computer Science, 2008, 5211: 133–145
https://doi.org/10.1007/978-3-540-87479-9_27
19 Golugula A, Lee G, Master S R, Feldman M D, Tomaszewski J E, Speicher D W, Madabhushi A. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. BMC Bioinformatics, 2011, 12(1): 483
https://doi.org/10.1186/1471-2105-12-483
20 Thum A, Mönchgesang S, Westphal L, Lübken T, Rosahl S, Neumann S, Posch S. Supervised Penalized Canonical Correlation Analysis. 2014, arXiv preprint arXiv:1405.1534
21 Jing X Y, Hu R M, Zhu Y P, Wu S S, Liang C, Yang J Y. Intra-view and inter-view supervised correlation analysis for multi-view feature learning. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014
22 Jing X, Sun J, Yao Y, Sui Z. Supervised and unsupervised face recognition method base on 3CCA. In: Proceedings of International Conference on Automatic Control and Artificial Intelligence. 2012, 2009–2012
https://doi.org/10.1049/cp.2012.1390
23 Guo S, Ruan Q, Wang Z, Liu S. Facial expression recognition using spectral supervised canonical correlation analysis. Journal of Information Science and Engineering, 2013, 29(5): 907–924
24 Shelton J A. Semi-supervised subspace learning and application to human functional magnetic brain resonance imaging data. Dissertation for the Doctoral Degree. Oxford: University of Oxford, 2010
25 Sun T, Chen S, Yang J, Shi P. A novel method of combined feature extraction for recognition. In: Proceedings of the 8th IEEE International Conference on Data Mining. 2008, 1043–1048
https://doi.org/10.1109/icdm.2008.28
26 Majumdar A, Ward R. Robust classifiers for data reduced via random projections. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(5): 1359–1371
https://doi.org/10.1109/TSMCB.2009.2038493
27 Wegelin J A. A survey of partial least squares (PLS) methods, with emphasis on the two-block case. Department of Statistics, University of Washington, Technical Report. 2000, 371
28 Bourke P. Cross correlation. Auto Correlation–2D Pattern Identification, 1996
29 Theodoridis S, Koutroumbas K. Pattern Recognition. 3rd ed. New York: Academic Press, 2006
30 Sun Q, Zeng S, Liu Y, Heng P, Xia D. A new method of feature fusion and its application in image recognition. Journal of Pattern Recognition, 2005, 38(12): 2437–2448
https://doi.org/10.1016/j.patcog.2004.12.013
31 Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis. Journal of Pattern Recognition, 2003, 36(9): 1961–1971
https://doi.org/10.1016/S0031-3203(03)00058-X
32 Shawe-Taylor J, Williams C K I, Cristianini N, Kandola J S. On the eigenspectrum of the gram matrix and the generalization error of kernel-PCA. IEEE Transactions on Information Theory, 2005, 51(7): 2510–2522
https://doi.org/10.1109/TIT.2005.850052
33 Bach F R, Jordan M I. Kernel independent component analysis. Journal of Machine Learning Research, 2002, 3: 1–48
34 Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuro Science, 1991, 3(1): 71–86
https://doi.org/10.1162/jocn.1991.3.1.71
35 Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class-specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720
https://doi.org/10.1109/34.598228
36 He X, Cai D, Niyogi P. Lplacian score for feature selection. Advances in Neural Information Processing Systems. 2005, 18: 507–514
37 Cai D, He X, Hu Y, Han J, Huang T. Learning a spatially smooth subspace for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1–7
https://doi.org/10.1109/cvpr.2007.383054
38 Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns. In: Proceedings of the 8th European Conference on Computer Vision. 2004, 469–481
https://doi.org/10.1007/978-3-540-24670-1_36
39 Zhang J, Zhang D. A novel ensemble construction method for multiview data using random cross-view correlation between within-class examples. Pattern Recognition, 2011, 44(6): 1162–1171
https://doi.org/10.1016/j.patcog.2010.12.011
[1]  Supplementary Material Download
[1] Worku J. SORI, Jiang FENG, Arero W. GODANA, Shaohui LIU, Demissie J. GELMECHA. DFD-Net: lung cancer detection from denoised CT scan image using deep learning[J]. Front. Comput. Sci., 2021, 15(2): 152701-.
[2] Yan LI, Shiguang SHAN, Ruiping WANG, Zhen CUI, Xilin CHEN. Fusing magnitude and phase features with multiple face models for robust face recognition[J]. Front. Comput. Sci., 2018, 12(6): 1173-1191.
[3] Qicong WANG,Binbin WANG,Xinjie HAO,Lisheng CHEN,Jingmin CUI,Rongrong JI,Yunqi LEI. Face recognition by decision fusion of two-dimensional linear discriminant analysis and local binary pattern[J]. Front. Comput. Sci., 2016, 10(6): 1118-1129.
[4] Leilei YANG,Songcan CHEN. Linear discriminant analysis with worst between-class separation and average within-class compactness[J]. Front. Comput. Sci., 2014, 8(5): 785-792.
[5] Xu YU,Jing YANG,Zhiqiang XIE. Training SVMs on a bound vectors set based on Fisher projection[J]. Front. Comput. Sci., 2014, 8(5): 793-806.
[6] Lishan QIAO, Limei ZHANG, Songcan CHEN. Dimensionality reduction with adaptive graph[J]. Front Comput Sci, 2013, 7(5): 745-753.
[7] Qiang QIAN, Songcan CHEN. Co-metric: a metric learning algorithm for data with multiple views[J]. Front Comput Sci, 2013, 7(3): 359-369.
[8] Pu HUANG, Zhenmin TANG, Caikou CHEN, Xintian CHENG. Nearest-neighbor classifier motivated marginal discriminant projections for face recognition[J]. Front Comput Sci Chin, 2011, 5(4): 419-428.
[9] Ling ZHANG, Edward I.ALTMAN, Jerome YEN. Corporate financial distress diagnosis model and application in credit rating for listing firms in China[J]. Front Comput Sci Chin, 2010, 4(2): 220-236.
[10] YANG Jian, YANG Jingyu, ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 2008, 2(3): 295-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed