Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2019, Vol. 13 Issue (5) : 1116-1135    https://doi.org/10.1007/s11704-018-6442-4
RESEARCH ARTICLE
A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning
Kang LI1,2, Fazhi HE1(), Haiping YU1, Xiao CHEN1
1. State Key Laboratory of Software Engineering, School of Computer Science,Wuhan University,Wuhan 430072, China
2. School of Computer Science and Information Engineering, Hubei University,Wuhan 430062, China
 Download: PDF(3262 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a novel tracking algorithm which integrates two complementary trackers. Firstly, an improved Bayesian tracker(B-tracker) with adaptive learning rate is presented. The classification score of B-tracker reflects tracking reliability, and a low score usually results from large appearance change. Therefore, if the score is low, we decrease the learning rate to update the classifier fast so that B-tracker can adapt to the variation and vice versa. In this way, B-tracker is more suitable than its traditional version to solve appearance change problem. Secondly, we present an improved incremental subspace learning method tracker(Stracker). We propose to calculate projected coordinates using maximum posterior probability, which results in a more accurate reconstruction error than traditional subspace learning tracker. Instead of updating at every time, we present a stopstrategy to deal with occlusion problem. Finally, we present an integrated framework(BAST), in which the pair of trackers run in parallel and return two candidate target states separately. For each candidate state, we define a tracking reliability metrics to measure whether the candidate state is reliable or not, and the reliable candidate state will be chosen as the target state at the end of each frame. Experimental results on challenging sequences show that the proposed approach is very robust and effective in comparison to the state-of-the-art trackers.

Keywords object tracking      Bayesian learning      subspace learning      particle filter      principal component analysis     
Corresponding Author(s): Fazhi HE   
Just Accepted Date: 04 September 2017   Online First Date: 04 September 2018    Issue Date: 25 June 2019
 Cite this article:   
Kang LI,Fazhi HE,Haiping YU, et al. A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning[J]. Front. Comput. Sci., 2019, 13(5): 1116-1135.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-018-6442-4
https://academic.hep.com.cn/fcs/EN/Y2019/V13/I5/1116
1 A Ali, A Jalil, J Niu, X Zhao, S Rathore, J Ahmed, M A Iftikhar. Visual object tracking–classical and contemporary approaches. Frontiers of Computer Science, 2016, 10(1): 167–188
https://doi.org/10.1007/s11704-015-4246-3
2 Y Wang, Q Zhao. Patchwise tracking via spatio-temporal constraintbased sparse representation and multiple-instance learning-based SVM. In: Proceedings of International Conference on Neural Information Processing. 2015, 264–271
https://doi.org/10.1007/978-3-319-26532-2_29
3 K Li, F He, X Chen. Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 2016, 10(4): 689–701
https://doi.org/10.1007/s11704-016-5106-5
4 G Wu, W Lu, G Gao, C Zhao, J Liu. Regional deep learning model for visual tracking. Neurocomputing, 2016, 175: 310–323
https://doi.org/10.1016/j.neucom.2015.10.064
5 Y Wu, M Pei, M Yang, J Yuan, Y Jia. Robust discriminative tracking via landmark-based label propagation. IEEE Transactions on Image Processing, 2015, 24(5): 1510–1523
https://doi.org/10.1109/TIP.2015.2405479
6 L Wang, T Liu, G Wang, K L Chan, Q Yang. Video tracking using learned hierarchical features. IEEE Transactions on Image Processing, 2015, 24(4): 1424–1435
https://doi.org/10.1109/TIP.2015.2403231
7 K Zhang, Q Liu, Y Wu, M H Yang. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792
https://doi.org/10.1109/TIP.2016.2531283
8 C Xu, W Tao, Z Meng, Z Feng. Robust visual tracking via online multiple instance learning with fisher information. Pattern Recognition, 2015, 48(12): 3917–3926
https://doi.org/10.1016/j.patcog.2015.06.004
9 G Wang, X Qin, F Zhong, Y Liu, H Li, Q Peng, M Yang. Visual tracking via sparse and local linear coding. IEEE Transactions on Image Processing, 2015, 24(11): 3796–3809
https://doi.org/10.1109/TIP.2015.2445291
10 X Sun, H Yao, S Zhang, D Li . Non-rigid object contour tracking via a novel supervised level set model. IEEE Transactions on Image Processing, 2015, 24(11): 3386–3399
https://doi.org/10.1109/TIP.2015.2447213
11 Y Sui, S Zhang, L Zhang. Robust visual tracking via sparsity-induced subspace learning. IEEE Transactions on Image Processing, 2015, 24(12): 4686–4700
https://doi.org/10.1109/TIP.2015.2462076
12 S I Jang, K Choi, K A Toh, A B J Teoh, J Kim. Object tracking based on an online learning network with total error rate minimization. Pattern Recognition, 2015, 48(1): 126–139
https://doi.org/10.1016/j.patcog.2014.07.020
13 J Sun, F He, Y Chen, X Chen. A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(2): 177–197
https://doi.org/10.1007/s11766-016-3378-z
14 H Hong-tu, B Du-yan, Z Yu-fei, M Shi-ping, G Shan, L Chang. Robust visual tracking based on product sparse coding. Pattern Recognition Letters, 2015, 56: 52–59
https://doi.org/10.1016/j.patrec.2015.01.014
15 C Chen, S Li, H Qin, A Hao. Real-time and robust object tracking in video via low-rank coherency analysis in feature space. Pattern Recognition, 2015, 48(9): 2885–2905
https://doi.org/10.1016/j.patcog.2015.01.025
16 T Zhang, S Liu, N Ahuja, M H Yang, B Ghanem. Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 2015, 111(2): 171–190
https://doi.org/10.1007/s11263-014-0738-0
17 X Zhang, W Hu, N Xie, H Bao, S Maybank. A robust tracking system for low frame rate video. International Journal of Computer Vision, 2015, 115(3): 279–304
https://doi.org/10.1007/s11263-015-0819-8
18 Y Zhou, X Bai , W Liu, L J Latecki. Similarity fusion for visual tracking. International Journal of Computer Vision, 2016, 118(3): 337–363
https://doi.org/10.1007/s11263-015-0879-9
19 D Zhang, F He, S Han, L Zou, Y Wu, Y Chen. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integrated Computer-Aided Engineering, 2017, 24(3), 261–277
https://doi.org/10.3233/ICA-170544
20 X Li, C Shen, A Dick, Z M Zhang, Y Zhuang. Online metric-weighted linear representations for robust visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 931–950
https://doi.org/10.1109/TPAMI.2015.2469276
21 T Zhang, S Liu, C Xu, S Yan, B Ghanem, N Ahuja, M H Yang. Structural sparse tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 150–158
https://doi.org/10.1109/CVPR.2015.7298610
22 K Li, F He, H P Yu. Robust visual tracking based on convolutional features with illumination and occlusion handling. Journal of Computer Science and Technology, 2018, 33(1): 223–236
https://doi.org/10.1007/s11390-017-1764-5
23 T Liu, G Wang, Q Yang. Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4902–4912
https://doi.org/10.1109/CVPR.2015.7299124
24 Y L Chen, F Z He , Y Q Wu, N Hou. A local start search algorithm to compute exact Hausdorff distance for arbitrary point sets. Pattern Recognition, 2017, 67: 139–148
https://doi.org/10.1016/j.patcog.2017.02.013
25 Z Zhang, K Hong Wong. Pyramid-based visual tracking using sparsity represented mean transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1226–1233
https://doi.org/10.1109/CVPR.2014.160
26 T Zhang, K Jia, C Xu, Y Ma, N Ahuja. Partial occlusion handling for visual tracking via robust part matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1258–1265
https://doi.org/10.1109/CVPR.2014.164
27 H P Yu, F He, Y Pan. A novel region-based active contour model via local patch similarity measure for image segmentation. Multimedia Tools and Applications, 2018, 77(18): 24097–24119
https://doi.org/10.1007/s11042-018-5697-y
28 M Danelljan, F Shahbaz Khan, M Felsberg, J Van de Weijer. Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1090–1097
https://doi.org/10.1109/CVPR.2014.143
29 M Yang, M T Pei, Y W Wu, Y Jia. Learning online structural appearance model for robust object tracking. Science China Information Sciences, 2015, 58(3): 1–14
https://doi.org/10.1007/s11432-014-5177-6
30 A W Smeulders, D M Chu, R Cucchiara, S Calderara, A Dehghan, M Shah. Visual tracking: an experimental survey. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2014, 36(7): 1442–1468
31 H Zhang, S Hu, G Yang. Video object tracking based on appearance models learning. Journal of Computer Research and Development, 2015, 52(1): 177–190
https://doi.org/10.1360/crad20070125
32 L Cehovin, A Leonardis, M Kristan. Visual object tracking performance measures revisited. IEEE Transactions on Image Processing, 2016, 25(3): 1261–1274
https://doi.org/10.1109/TIP.2016.2520370
33 Y Wu, J Lim, M H Yang. Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418
https://doi.org/10.1109/CVPR.2013.312
34 B Ni, F He, Y Pan, Z Yuan. Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computeraided therapy. AppliedMathematics-A Journal of Chinese Universities, 2016, 31(1): 37–52
https://doi.org/10.1007/s11766-016-3340-0
35 X Yan, F He, N Hou, H Ai. An efficient particle swarm optimization for large scale hardware/software co-design system. International Journal of Cooperative Information Systems, 2018, 27(1): 1741001
https://doi.org/10.1142/S0218843017410015
36 Q Yu, T B Dinh, G Medioni. Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Proceedings of European Conference on Computer Vision. 2008, 678–691
https://doi.org/10.1007/978-3-540-88688-4_50
37 D Zhang, F He, S Han, X Li. Quantitative optimization of interoperability during feature-based data exchange. Integrated Computer-Aided Engineering, 2016, 23(1): 31–51
https://doi.org/10.3233/ICA-150499
38 J Kwon, K M Lee. Visual tracking decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1269–1276
https://doi.org/10.1109/CVPR.2010.5539821
39 D A Ross, J Lim, R S Lin, M H Yang. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1): 125–141
https://doi.org/10.1007/s11263-007-0075-7
40 P N Belhumeur, D J Kriegman. What is the set of images of an object under all possible illumination conditions? International Journal of Computer Vision, 1998, 28(3): 245–260
https://doi.org/10.1023/A:1008005721484
41 X Mei, H Ling. Robust visual tracking using L1 minimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1436–1443
42 C Bao, Y Wu, H Ling, H Ji. Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1830–1837
43 X Jia, H Lu, M H Yang. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
44 W Zhong, H Lu, M H Yang. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845
https://doi.org/10.1109/CVPR.2012.6247882
45 D Wang, H Lu, M H Yang. Online object tracking with sparse prototypes. IEEE Transactions on Image Processing, 2013, 22(1): 314–325
https://doi.org/10.1109/TIP.2012.2202677
46 N Wang, J Wang, D Y Yeung. Online robust non-negative dictionary learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 657–664
https://doi.org/10.1109/ICCV.2013.87
47 S Zhang, H Yao, X Sun, X Lu. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772–1788
https://doi.org/10.1016/j.patcog.2012.10.006
48 B Babenko, M H Yang, S Belongie. Visual tracking with online multiple instance learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 983–990
https://doi.org/10.1109/CVPR.2009.5206737
49 N Wang, J Shi, D Y Yeung, J Jia. Understanding and diagnosing visual tracking systems. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3101–3109
https://doi.org/10.1109/ICCV.2015.355
50 S Hare, S Golodetz, A Saffari, V Vineet, M M Cheng, S L Hicks, P H Torr. Struck: structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109
https://doi.org/10.1109/TPAMI.2015.2509974
51 K Zhang, L Zhang, M Yang. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877
https://doi.org/10.1007/978-3-642-33712-3_62
52 Z Kalal, J Matas, K Mikolajczyk. PN learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 49–56
53 Z Kalal, K Mikolajczyk, J Matas. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422
https://doi.org/10.1109/TPAMI.2011.239
54 H Grabner, M Grabner, H Bischof. Realtime tracking via on-line boosting. In: Proceedings of British Machine Vision Conference. 2006, 47–56
55 M S Arulampalam, S Maskell, N Gordon, T Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188
https://doi.org/10.1109/78.978374
56 K Li, F He, H P Ye, X Chen. A correlative classiffiers approach based on particle filter and sample set for tracking occluded target. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3): 294–312
https://doi.org/10.1007/s11766-017-3466-8
57 A Levey, M Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 2000, 9(8): 1371–1374
https://doi.org/10.1109/83.855432
58 D Wang, H C Lu, M H Yang. Least soft-thresold squares tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2371–2378
59 D Wang, H Lu. Visual tracking via probability continuous outlier model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3478–3485
https://doi.org/10.1109/CVPR.2014.445
60 X Jia, H Lu, M H Yang. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
61 T B Dinh, N Vo, G Medioni. Context tracker: exploring supporters and distracters in unconstrained environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1177–1184
https://doi.org/10.1109/CVPR.2011.5995733
62 P Viola, M Jones. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2001, 511–518
https://doi.org/10.1109/CVPR.2001.990517
63 Y Zhou, F He, Y Qiu. Optimization of parallel iterated local search algorithms on graphics processing unit. The Journal of Supercomputing, 2016, 72(6): 2394–2416
https://doi.org/10.1007/s11227-016-1738-3
64 Y Zhou, F He, Y Qiu. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Science China Information Sciences, 2017, 60(6): 068102
https://doi.org/10.1007/s11432-015-0594-2
65 Y Wu, F He, D Zhang, X Li. Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Transactions on Services Computing, 2015, 11(2): 341–353
https://doi.org/10.1109/TSC.2015.2501981
66 Y Zhou, F He, N Hou. Parallel ant colony optimization on multi-core simdcpus. Future Generation Computer Systems, 2018, 79(2): 473–487
https://doi.org/10.1016/j.future.2017.09.073
67 X Yan, F He, Y Chen. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization. Journal of Computer Science and Technology, 2017, 32(2): 340–355
https://doi.org/10.1007/s11390-017-1714-2
68 X Lv, F He, W Cai. Supporting selective undo of string-wise operations for collaborative editing systems. Future Generation Computer Systems, 2018, 82: 41–62
https://doi.org/10.1016/j.future.2017.11.046
69 X Lv, F He, W Cai, Y Cheng. A string-wise CRDT algorithm for smart and large-scale collaborative editing systems. Advanced Engineering Informatics, 2017, 33: 397–409
https://doi.org/10.1016/j.aei.2016.10.005
70 H Zhu, Y Nie, T Yue, X Cao. The role of prior in image based 3D modeling: a survey. Frontiers of Computer Science, 2017, 11(2): 175–191
https://doi.org/10.1007/s11704-016-5520-8
71 Y Han, G Jia. Optimizing product manufacturability in 3D printing. Frontiers of Computer Science, 2017, 11(2): 347–357
https://doi.org/10.1007/s11704-016-6154-6
[1] Di MA, Songcan CHEN. Bayesian compressive principal component analysis[J]. Front. Comput. Sci., 2020, 14(4): 144303-.
[2] Jun XIAO, Sidong LIU, Liang HU, Ying WANG. Filtering method of rock points based on BP neural network and principal component analysis[J]. Front. Comput. Sci., 2018, 12(6): 1149-1159.
[3] Nan REN,Junping DU,Suguo ZHU,Linghui LI,Dan FAN,JangMyung LEE. Robust visual tracking based on scale invariance and deep learning[J]. Front. Comput. Sci., 2017, 11(2): 230-242.
[4] Feifei ZHANG,Yongbin YU,Qirong MAO,Jianping GOU,Yongzhao ZHAN. Pose-robust feature learning for facial expression recognition[J]. Front. Comput. Sci., 2016, 10(5): 832-844.
[5] Kang LI,Fazhi HE,Xiao CHEN. Real-time object tracking via compressive feature selection[J]. Front. Comput. Sci., 2016, 10(4): 689-701.
[6] Ahmad ALI,Abdul JALIL,Jianwei NIU,Xiaoke ZHAO,Saima RATHORE,Javed AHMED,Muhammad AKSAM IFTIKHAR. Visual object tracking—classical and contemporary approaches[J]. Front. Comput. Sci., 2016, 10(1): 167-188.
[7] Jianhua JIA, Bingxiang LIU, Licheng JIAO. Soft spectral clustering ensemble applied to image segmentation[J]. Front Comput Sci Chin, 2011, 5(1): 66-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed