Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (2) : 172605    https://doi.org/10.1007/s11704-022-1462-5
RESEARCH ARTICLE
The most tenuous group query
Na LI1,2, Huaijie ZHU2,3(), Wenhao LU1,2, Ningning CUI4, Wei LIU2,3, Jian YIN2,3, Jianliang XU5, Wang-Chien LEE6
1. School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
2. Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China
3. School of Artificial Intelligence, Sun Yat-Sen University, Guangzhou 510006, China
4. Department of Computer Science, Anhui University, Hefei 230601, China
5. Department of Computer Science, Hong Kong Baptist University, Hong Kong 999077, China
6. Department of Computer Science, The Pennsylvania State University, State College 19019, USA
 Download: PDF(5175 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently a lot of works have been investigating to find the tenuous groups, i.e., groups with few social interactions and weak relationships among members, for reviewer selection and psycho-educational group formation. However, the metrics (e.g., k-triangle, k-line, and k-tenuity) used to measure the tenuity, require a suitable k value to be specified which is difficult for users without background knowledge. Thus, in this paper we formulate the most tenuous group (MTG) query in terms of the group distance and average group distance of a group measuring the tenuity to eliminate the influence of parameter k on the tenuity of the group. To address the MTG problem, we first propose an exact algorithm, namely MTG-VDIS, which takes priority to selecting those vertices whose vertex distance is large, to generate the result group, and also utilizes effective filtering and pruning strategies. Since MTG-VDIS is not fast enough, we design an efficient exact algorithm, called MTG-VDGE, which exploits the degree metric to sort the vertexes and proposes a new combination order, namely degree and reverse based branch and bound (DRBB). MTG-VDGE gives priority to those vertices with small degree. For a large p, we further develop an approximation algorithm, namely MTG-VDLT, which discards candidate attendees with high degree to reduce the number of vertices to be considered. The experimental results on real datasets manifest that the proposed algorithms outperform existing approaches on both efficiency and group tenuity.

Keywords tenuous group      pruning strategy      social network      group query     
Corresponding Author(s): Huaijie ZHU   
Just Accepted Date: 28 January 2022   Issue Date: 04 August 2022
 Cite this article:   
Na LI,Huaijie ZHU,Wenhao LU, et al. The most tenuous group query[J]. Front. Comput. Sci., 2023, 17(2): 172605.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-1462-5
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I2/172605
Fig.1  A social network graph G
  
Fig.2  An example of MTG-VDIS
  
  
Fig.3  An example of MTG-VDGE
Fig.4  Cost model
Fig.5  Query time vs. different p values. (a) LA dataset; (b) DE dataset; (c) RO dataset
Fig.6  Query time vs. different dataset sizes
Fig.7  Query time of MTG-VDLT
p LA DE RO
MTG-VDLT MTG-VDGE MTG-VDLT MTG-VDGE MTG-VDLT MTG-VDGE
4 (14,14) (14,14) (19,19.5) (19,19.5) (17,17.5) (17,17.5)
5 (13,13.2) (13,13.2) (18,18.8) (18,18.8) (17,17.2) (17,17.2)
6 (12,12.6667) (12,12.6667) (17,18) (18,18.1667) (16,16.6667) (16,16.6667)
7 (12,12.2857) (12,12.2857) (17,17.7143) (17,17.7143) (16,16.4286) (16,16.4286)
8 (12,12) (12,12) (16,17.25) (17,17.5) (16,16.25) (16,16.25)
9 (11,11.7778) (11,11.7778) (16,16.7778) (16,17.2222) (15,16) (15,16)
Tab.1  Distance and average group distance of the result of the MTG-VDLT and MTG-VDGE
p LA DE RO
4 1 1 1
5 1 1 1
6 1 0.9458 1
7 1 1 1
8 1 0.9427 1
9 1 0.9996 1
Tab.2  The accuracy score S of MTG-VDLT
Fig.8  The accuracy score S of KLMA. (a) LA dataset; (b) DE dataset; (c) RO dataset
Algorithm Answer groups
MTG-VDGE {6829,5779,4268,3885,2990,2287}
{6829,5779,4510,4268,3885,2990}
{6829,5779,5239,3885,2990,2287}
{6829,5779,5239,4510,3885,2990}
MTG-VDLT {6829,5779,4268,3885,2990,2287}
{6829,5779,4510,4268,3885,2990}
{6829,5779,5239,3885,2990,2287}
{6829,5779,5239,4510,3885,2990}
KLMA k=10:{2287,5779,6829,7493,3656,4268}
k=9:{2287,5779,2990,3885,6829,6402}
k=8:{2287,5779,2990,1071,3885,6829}
k=7:{2287,3885,5779,6829,2990,1071}
k=6:{2287,3885,6829,5779,7493,2990}
k=5:{2990,3982,4463,5239,6829,7493}
k=4:{1036,1071,1841,2009,2990,3027}
k=3:{74,100,163,242,352,493}
Tab.3  The answer groups returned by MTG-VDLT, MTG-VDGE and KLMA algorithms
p LA/MB DE/GB RO/GB
p=4 725.0 9.692 21.138
p=5 725.0 9.693 21.138
p=6 725.2 9.693 21.140
p=7 725.3 9.694 21.141
p=8 725.5 9.695 21.142
p=9 725.6 9.696 21.143
Tab.4  Space overhead of MTG-VDIS under different parameters
p LA/MB DE/MB RO/GB DBLP/GB
p=4 56.6 763.4 1.6 93.6
p=5 56.6 763.4 1.6 93.6
p=6 56.6 763.4 1.6 93.6
p=7 56.6 763.4 1.6 93.6
p=8 56.6 763.4 1.6 93.6
p=9 56.6 763.4 1.6 93.6
Tab.5  Space overhead of MTG-VDGE and MTG-VDLT under different parameters
  
  
  
  
  
  
  
  
1 W, Cui Y, Xiao H, Wang W Wang. Local search of communities in large graphs. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 2014, 991– 1002
2 R H, Li L, Qin J X, Yu R Mao . Influential community search in large networks. Proceedings of the VLDB Endowment, 2015, 8( 5): 509– 520
3 S B Seidman . Network structure and minimum degree. Social Networks, 1983, 5( 3): 269– 287
4 M, Sozio A Gionis. The community-search problem and how to plan a successful cocktail party. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010, 939– 948
5 D, Zheng J, Liu R H, Li C, Aslay Y C, Chen X Huang. Querying intimate-core groups in weighted graphs. In: Proceedings of the 11th IEEE International Conference on Semantic Computing (ICSC). 2017, 156– 163
6 S, Ebadian X Huang. Fast algorithm for K-truss discovery on public-private graphs. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 2258– 2264
7 X, Huang H, Cheng L, Qin W, Tian J X Yu. Querying k-truss community in large and dynamic graphs. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 2014, 1311– 1322
8 X, Huang L V S, Lakshmanan J X, Yu H Cheng . Approximate closest community search in networks. Proceedings of the VLDB Endowment, 2015, 9( 4): 276– 287
9 J, Hu R, Cheng K C C, Chang A, Sankar Y, Fang B Y H Lam. Discovering maximal motif cliques in large heterogeneous information networks. In: Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE). 2019, 746– 757
10 C, Ma R, Cheng L V S, Lakshmanan T, Grubenmann Y, Fang X Li . LINC: a motif counting algorithm for uncertain graphs. Proceedings of the VLDB Endowment, 2019, 13( 2): 155– 168
11 B, Hou Z, Wang Q, Chen B, Suo C, Fang Z, Li Z G Ives . Efficient maximal clique enumeration over graph data. Data Science and Engineering, 2016, 1( 4): 219– 230
12 W Li. Finding tenuous groups in social networks. In: Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW). 2018, 284– 291
13 Y, Li H, Sun L, He J, Huang J, Chen H, He X Jia . Querying tenuous group in attributed networks. The Computer Journal, 2020, bxaa115
https://doi.org/10.1093/comjnl/bxaa115
14 C Y, Shen L H, Huang D N, Yang H H, Shuai W C, Lee M S Chen. On finding socially tenuous groups for online social networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 415– 424
15 C Y, Shen H H, Shuai D N, Yang G S, Lee L H, Huang W C, Lee M S Chen. On extracting socially tenuous groups for online social networks with k-triangles. IEEE Transactions on Knowledge and Data Engineering, 2020,
16 Center for Substance Abuse Treatment. Substance abuse treatment: Group therapy. 2005
17 A V Goldberg. Finding a Maximum Density Subgraph. Berkeley: University of California, 1984
18 C Tsourakakis. The k-clique densest subgraph problem. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1122– 1132
19 M, Mitzenmacher J, Pachocki R, Peng C, Tsourakakis S C Xu. Scalable large near-clique detection in large-scale networks via sampling. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, 815– 824
20 Y, Fang K, Yu R, Cheng L V S, Lakshmanan X Lin . Efficient algorithms for densest subgraph discovery. Proceedings of the VLDB Endowment, 2019, 12( 11): 1719– 1732
21 M Charikar. Greedy approximation algorithms for finding dense components in a graph. In: Proceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization. 2000, 84– 95
22 B, Bahmani R, Kumar S Vassilvitskii . Densest subgraph in streaming and MapReduce. Proceedings of the VLDB Endowment, 2012, 5( 5): 454– 465
23 A, Bhaskara M, Charikar E, Chlamtac U, Feige A Vijayaraghavan. Detecting high log-densities: an O( n1/4) approximation for densest k-subgraph . In: Proceedings of the 42nd ACM Symposium on Theory of Computing. 2010, 201– 210
24 L, Qin R H, Li L, Chang C Zhang. Locally densest subgraph discovery. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, 965– 974
25 R, Kannan V Vinay. Analyzing the Structure of Large Graphs. Forschungsinst. für Diskrete Mathematik, 1999
26 S, Khuller B Saha. On finding dense subgraphs. In: Proceedings of the 36th International Colloquium on Automata, Languages, and Programming. 2009, 597– 608
[1] FCS-21462-OF-NL_suppl_1 Download
[1] Xiao PAN, Lei WU, Fenjie LONG, Ang MA. Exploiting user behavior learning for personalized trajectory recommendations[J]. Front. Comput. Sci., 2022, 16(3): 163610-.
[2] Gang WU, Zhiyong CHEN, Jia LIU, Donghong HAN, Baiyou QIAO. Task assignment for social-oriented crowdsourcing[J]. Front. Comput. Sci., 2021, 15(2): 152316-.
[3] Ruidong YAN, Yi LI, Deying LI, Weili WU, Yongcai WANG. SSDBA: the stretch shrink distance based algorithm for link prediction in social networks[J]. Front. Comput. Sci., 2021, 15(1): 151301-.
[4] Ildar NURGALIEV, Qiang QU, Seyed Mojtaba Hosseini BAMAKAN, Muhammad MUZAMMAL. Matching user identities across social networks with limited profile data[J]. Front. Comput. Sci., 2020, 14(6): 146809-.
[5] Yiteng PAN, Fazhi HE, Haiping YU. A correlative denoising autoencoder to model social influence for top-N recommender system[J]. Front. Comput. Sci., 2020, 14(3): 143301-.
[6] Kai LI, Guangyi LV, Zhefeng WANG, Qi LIU, Enhong CHEN, Lisheng QIAO. Understanding the mechanism of social tie in the propagation process of social network with communication channel[J]. Front. Comput. Sci., 2019, 13(6): 1296-1308.
[7] Satoshi MIYAZAWA, Xuan SONG, Tianqi XIA, Ryosuke SHIBASAKI, Hodaka KANEDA. Integrating GPS trajectory and topics from Twitter stream for human mobility estimation[J]. Front. Comput. Sci., 2019, 13(3): 460-470.
[8] Zhongqing WANG, Shoushan LI, Guodong ZHOU. Personal summarization from profile networks[J]. Front. Comput. Sci., 2017, 11(6): 1085-1097.
[9] Yuan SU,Xi ZHANG,Lixin LIU,Shouyou SONG,Binxing FANG. Understanding information interactions in diffusion: an evolutionary game-theoretic perspective[J]. Front. Comput. Sci., 2016, 10(3): 518-531.
[10] Siyuan LIU,Shuhui WANG,Ce LIU,Ramayya KRISHNAN. Understanding taxi drivers’ routing choices from spatial and social traces[J]. Front. Comput. Sci., 2015, 9(2): 200-209.
[11] Peng ZHANG. Unbalanced graph cuts with minimum capacity[J]. Front. Comput. Sci., 2014, 8(4): 676-683.
[12] Rong-Hua LI, Jianquan LIU, Jeffrey Xu YU, Hanxiong CHEN, Hiroyuki KITAGAWA. Co-occurrence prediction in a large location-based social network[J]. Front Comput Sci, 2013, 7(2): 185-194.
[13] Xiaolong ZHENG, Yongguang ZHONG, Daniel ZENG, Fei-Yue WANG. Social influence and spread dynamics in social networks[J]. Front Comput Sci, 2012, 6(5): 611-620.
[14] Guojun WANG, Jie WU. FlowTrust: trust inference with network flows[J]. Front Comput Sci Chin, 2011, 5(2): 181-194.
[15] Yufeng WANG, Akihiro NAKAO, Jianhua MA, . Socially inspired search and ranking in mobile social networking: concepts and challenges[J]. Front. Comput. Sci., 2009, 3(4): 435-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed