Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (10) : 1423-1429    https://doi.org/10.1007/s11705-023-2315-y
RESEARCH ARTICLE
The stabilization effect of Al2O3 on unconventional Pb/SiO2 catalyst for propane dehydrogenation
Guowei Wang1(), Lanhui Zhou1, Huanling Zhang2(), Chunlei Zhu1, Xiaolin Zhu1, Honghong Shan1
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
2. SINOPEC (Dalian) Research Institute of Petroleum and Petrochemical Co., Ltd., Dalian 116000, China
 Download: PDF(3438 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Similar to Sn, Pb located at the same group (IVA) in the periodic table of elements, can also catalyze propane dehydrogenation to propene, while a fast deactivation can be observed. To enhance the stability, the traditional carrier Al2O3 with a small amount, was introduced into Pb/SiO2 catalyst in this study. It has been proved that Al2O3 can inhibit the reduction of PbO, and weaken the agglomeration and loss of Pb species due to its enhanced interaction with Pb species. As a result, 3Al15Pb/SiO2 catalyst exhibits a much higher stability up to more than 150 h. In addition, a simple schematic diagram of the change of surface species on the catalyst surface after Al2O3 addition was also proposed.

Keywords Pb/SiO2      Al2O3      propane dehydrogenation      propene      stability     
Corresponding Author(s): Guowei Wang,Huanling Zhang   
Just Accepted Date: 10 May 2023   Online First Date: 30 June 2023    Issue Date: 07 October 2023
 Cite this article:   
Guowei Wang,Lanhui Zhou,Huanling Zhang, et al. The stabilization effect of Al2O3 on unconventional Pb/SiO2 catalyst for propane dehydrogenation[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1423-1429.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2315-y
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I10/1423
Fig.1  XRD patterns of fresh (a) xAl/SiO2 and (b) xAl15Pb/SiO2 catalysts with different Al loadings.
Fig.2  Catalytic performance of 15Pb/SiO2 and xAl15Pb/SiO2 catalysts for propane dehydrogenation.
SamplesSpecific surface area/(m2·g–1)Pore volume/ (cm3·g–1)Pore diameter/nm
Fresh SiO2437.00.907.3
Fresh 15Pb/SiO2153.30.6311.6
Fresh 1.5Al/SiO2391.50.867.3
Fresh 3Al/SiO2370.80.827.3
Fresh 5Al/SiO2340.50.747.3
Fresh 1.5Al15Pb/SiO2269.20.647.3
Fresh 3Al15Pb/SiO2248.70.617.3
Fresh 5Al15Pb/SiO2240.50.587.3
Spent 15Pb/SiO2a)131.70.5211.7
Spent 1.5Al15Pb/SiO2b)249.00.597.3
Spent 3Al15Pb/SiO2b)245.90.587.3
Spent 5Al15Pb/SiO2b)229.30.547.3
Spent 3Al15Pb/SiO2c)97.70.163.6
Tab.1  BET specific surface area and pore properties of fresh xAl/SiO2, fresh xAl15Pb/SiO2 and spent xAl15Pb/SiO2 catalysts
Fig.3  The dehydrogenation performance of 3Al15Pb/SiO2 catalyst.
Fig.4  UV–Vis spectra of SiO2 and xAl15Pb/SiO2 catalysts with different Al loadings.
Fig.5  (a) 27Al NMR of 3Al/SiO2 catalyst and (b) 27Al NMR of 3Al15Pb/SiO2 catalyst.
Fig.6  H2-TPR profiles of xAl15Pb/SiO2 catalysts.
Fig.7  TEM images of 15Pb/SiO2 and 3Al15Pb/SiO2 catalysts: (a) fresh 15Pb/SiO2, (b) spent 15Pb/SiO2 reacted for 0.5 h, (c) fresh 3Al15Pb/SiO2, (d) spent 3Al15Pb/SiO2-1 reacted for 2 h, (e) spent 3Al15Pb/SiO2-2 reacted for 206 h.
  Scheme1 Schematic diagram of the change of surface species on the catalyst surface after Al2O3 addition.
1 G W Wang, H L Zhang, H R Wang, Q Q Zhu, C Y Li, H H Shan. The role of metallic Sn species in catalytic dehydrogenation of propane: active component rather than only promoter. Journal of Catalysis, 2016, 344: 606–608
https://doi.org/10.1016/j.jcat.2016.11.003
2 G W Wang, H L Zhang, Q Q Zhu, Z X Lin, X Y Li, H Wang, C Y Li, H H Shan. Sn-containing hexagonal mesoporous silica (HMS) for catalytic dehydrogenation of propane: an efficient strategy to enhance stability. Journal of Catalysis, 2017, 351: 90–94
https://doi.org/10.1016/j.jcat.2017.04.018
3 H R Wang, H Wang, X Y Li, C Y Li. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane. Applied Surface Science, 2017, 407: 456–462
https://doi.org/10.1016/j.apsusc.2017.02.216
4 H R Wang, H W Huang, K Bashir, C Y Li. Isolated Sn on mesoporous silica as a highly stable and selective catalyst for the propane dehydrogenation. Applied Catalysis A: General, 2020, 590: 117291–117298
https://doi.org/10.1016/j.apcata.2019.117291
5 H Zhang, Y Jiang, W Dai, N Tang, X Zhu, C Li, H Shan, G Wang. Catalytic dehydrogenation of propane over unconventional Pb/SiO2 catalysts. Fuel, 2022, 318: 123532–123537
https://doi.org/10.1016/j.fuel.2022.123532
6 X Y Zhu, T H Wang, Z K Xu, Y Y Yue, M G Lin, H B Zhu. Pt–Sn clusters anchored at Al3+penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. Journal of Energy Chemistry, 2022, 65: 293–301
https://doi.org/10.1016/j.jechem.2021.06.002
7 Y H Dai, J J Gu, S Y Tian, Y Wu, J C Chen, F X Li, Y H Du, L M Peng, W P Ding, Y H Yang. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. Journal of Catalysis, 2020, 381: 482–492
https://doi.org/10.1016/j.jcat.2019.11.026
8 M Arora, S Baccaro, G Sharma, D Singh, K S Thind, D P Singh. Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy. Nuclear Instruments & Methods in Physics Research, 2009, 267(5): 817–820
https://doi.org/10.1016/j.nimb.2009.01.003
9 M Leśniak, J Partyka, K Pasiut, M Sitarz. Microstructure study of opaque glazes from SiO2-Al2O3-MgO-K2O-Na2O system by variable molar ratio of SiO2/Al2O3 by FTIR and Raman spectroscopy. Journal of Molecular Structure, 2016, 1126: 240–250
https://doi.org/10.1016/j.molstruc.2015.12.072
10 C H Li, P Sengodu, D Y Wang, T R Kuo, C C Chen. Highly stable cycling of a lead oxide/copper nanocomposite as an anode material in lithium ion batteries. RSC Advances, 2015, 5(62): 50245–50252
https://doi.org/10.1039/C5RA07948A
11 Y B Saddeek, M S Gaafar, S A Bashier. Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system. Journal of Non-Crystalline Solids, 2010, 356(20–22): 1089–1095
https://doi.org/10.1016/j.jnoncrysol.2010.01.010
12 M Nafees, M Ikram, S Ali. Thermal stability of lead sulfide and lead oxide nano-crystalline materials. Applied Nanoscience, 2017, 7(7): 399–406
https://doi.org/10.1007/s13204-017-0578-7
13 P H Zhang, Y N Wang, Y M Sui, C Z Wang, B B Liu, G T Zou, B Zou. A facile method to synthesize nanosized metal oxides from their corresponding bulk materials. CrystEngComm, 2012, 14(18): 5937–5942
https://doi.org/10.1039/c2ce25398d
14 S K Noukelag, H E A Mohamed, L C Razanamahandry, S K O Ntwampe, C J Arendse. Bio-inspired synthesis of PbO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. Materials Today: Proceedings, 2021, 36: 421–426
https://doi.org/10.1016/j.matpr.2020.04.852
15 A Dandapat, D Jana, G De. Synthesis of thick mesoporous gamma-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst. ACS Applied Materials & Interfaces, 2009, 1(4): 833–840
https://doi.org/10.1021/am800241x
16 J H Kwak, J Hu, D Mei, C W Yi, D H Kim, C H F Peden, L F Allard, J Szanyi. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science, 2009, 325(5948): 1670–1673
https://doi.org/10.1126/science.1176745
17 L Shi, G M Deng, W C Li, S Miao, Q N Wang, W P Zhang, A H Lu. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt–Sn clusters for propane dehydrogenation. Angewandte Chemie International Edition, 2015, 54(47): 13994–13998
https://doi.org/10.1002/anie.201507119
18 N F Tang, Y Cong, Q Shang, C Wu, G Xu, X Wang. Coordinatively unsaturated Al3+ sites anchored subnanometric ruthenium catalyst for hydrogenation of aromatics. ACS Catalysis, 2017, 7(9): 5987–5991
https://doi.org/10.1021/acscatal.7b01816
19 M Mudgal, A Singh, R K Chouhan, A Acharya, A K Srivastava. Fly ash red mud geopolymer with improved mechanical strength. Cleaner Engineering and Technology, 2021, 4: 100215–100221
https://doi.org/10.1016/j.clet.2021.100215
20 M Kanuchova, L Kozakova, M Drabova, M Sisol, A Estokova, J Kanuch, J Skvarla. Monitoring and characterization of creation of geopolymers prepared from fly ash and metakaolin by X-ray photoelectron spectroscopy method. Environmental Progress & Sustainable Energy, 2015, 34(3): 841–849
https://doi.org/10.1002/ep.12068
21 J Kwak, J Hu, D Kim, J Szanyi, C Peden. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: an ultra-high-magnetic field 27Al MAS NMR study. Journal of Catalysis, 2007, 251(1): 189–194
https://doi.org/10.1016/j.jcat.2007.06.029
22 L A O’Dell, S L P Savin, A V Chadwick, M E A Smith. 27Al MAS NMR study of a sol–gel produced alumina identification of the NMR parameters of the θ-Al2O3 transition alumina phase. Solid State Nuclear Magnetic Resonance, 2007, 31(4): 169–173
https://doi.org/10.1016/j.ssnmr.2007.05.002
23 S N Dong, W J Shi, J Zhang, S P Bi. 27Al NMR chemical shifts and relative stabilities of aqueous monomeric Al3+ hydrolytic species with different coordination structures. ACS Earth & Space Chemistry, 2019, 3(7): 1353–1361
https://doi.org/10.1021/acsearthspacechem.9b00102
24 G Wendt, C D Meinecke, W Schmitz. Oxidative dimerization of methane on lead oxide-alumina catalysts. Applied Catalysis, 1988, 45(2): 209–220
https://doi.org/10.1016/S0166-9834(00)83030-4
25 S L Wang, H Y Niu, J J Wang, T Chen, G Y Wang, J M Zhang. Highly effective transformation of methyl phenyl carbonate to diphenyl carbonate with recyclable Pb nanocatalyst. RSC Advances, 2019, 9(35): 20415–20423
https://doi.org/10.1039/C9RA03931G
[1] FCE-22140-OF-WG_suppl_1 Download
[1] Ling Ge, Tao Liu, Yimin Zhang, Hong Liu. Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flow battery[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1221-1230.
[2] Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer[J]. Front. Chem. Sci. Eng., 2023, 17(5): 516-524.
[3] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[4] Mengqi Cui, Zining Wang, Yuanye Jiang, Hui Wang. Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1259-1267.
[5] Lili Yuan, Xiao-Dong Gao, Yufei Xia. Optimising the oil phases of aluminium hydrogel-stabilised emulsions for stable, safe and efficient vaccine adjuvant[J]. Front. Chem. Sci. Eng., 2022, 16(6): 973-984.
[6] Jinian Yang, Xuesong Feng, Shibin Nie, Yuxuan Xu, Zhenyu Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(4): 484-497.
[7] Yu-Chao Wang, Tian-Tian Li, Li Huang, Xiao-Qin Liu, Lin-Bing Sun. Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive separation[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1623-1631.
[8] Jingwei Zhang, Lingxin Kong, Yao Chen, Huijiang Huang, Huanhuan Zhang, Yaqi Yao, Yuxi Xu, Yan Xu, Shengping Wang, Xinbin Ma, Yujun Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 666-678.
[9] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[10] Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
[11] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[12] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[13] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[14] Junbo Gong, Dejiang Zhang, Yuanyuan Ran, Keke Zhang, Shichao Du. Solvates and polymorphs of clindamycin phosphate: Structural, thermal stability and moisture stability studies[J]. Front. Chem. Sci. Eng., 2017, 11(2): 220-230.
[15] Yanhui Liu,Biqiang Chen,Zheng Wang,Luo Liu,Tianwei Tan. Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27[J]. Front. Chem. Sci. Eng., 2016, 10(2): 238-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed