Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (11) : 1788-1800    https://doi.org/10.1007/s11705-023-2326-8
RESEARCH ARTICLE
Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for high-rate supercapacitors
Ning Zhang1, Fu-Cheng Gao1, Hong Liu1, Feng-Yun Wang2, Ru-Liang Zhang1, Qing Yu1, Lei Liu1()
1. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, China
 Download: PDF(6353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Monodispersed nitrogen-doped carbon nanospheres with tunable particle size (100–230 nm) were synthesized via self-polymerization of biochemical dopamine in the presence of hexamethylenetetramine as a buffer and F127 as a size controlling agent. Hexamethylenetetramine can mildly release NH3, which in turn initiates the polymerization reaction of dopamine. The carbon nanospheres obtained exhibited a significant energy storage capability of 265 F·g–1 at 0.5 A·g–1 and high-rate performance of 82% in 6 mol·L–1 KOH (20 A·g–1), which could be attributed to the presence of abundant micro-mesoporous structure, doped nitrogen functional groups and the small particle size. Moreover, the fabricated symmetric supercapacitor device displayed a high stability of 94% after 5000 cycles, revealing the considerable potential of carbon nanospheres as electrode materials for energy storage.

Keywords carbon nanospheres      size-controlled      nitrogen-doped      high-rate      supercapacitors     
Corresponding Author(s): Lei Liu   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 22 May 2023   Online First Date: 03 July 2023    Issue Date: 25 October 2023
 Cite this article:   
Ning Zhang,Fu-Cheng Gao,Hong Liu, et al. Size-controllable synthesis of monodispersed nitrogen-doped carbon nanospheres from polydopamine for high-rate supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1788-1800.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2326-8
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I11/1788
Fig.1  Schematic illustration of the synthetic procedure of NMCSs.
Fig.2  SEM images of NMCSs-x-y. (a, b) NMCSs-2-700, (c, d) NMCSs-4-700 and (e, f) NMCSs-15-700.
Fig.3  TEM images of NMCSs-x-700. (a, b) NMCSs-2-700, (c, d) NMCSs-4-700 and (e, f) NMCSs-15-700.
Fig.4  SEM images of NMCSs-15-y. (a) NMCSs-15-600, (b) NMCSs-15-800. The SEM elemental mapping of (c) image (d) C, (e) N and (f) O in NMCSs-15-700.
Fig.5  TEM images of NMCSs-15-y. (a, b) NMCSs-15-600 and (c, d) NMCSs-15-800.
SamplesFrom N2 adsorption at –196 °CChemical composition
SBETa)Smicrob)VtotalVmicrob)CON
NMCSs-2-7002852430.250.1492.965.151.89
NMCSs-4-7002992440.270.1488.287.803.92
NMCSs-15-7005414361.020.3088.625.795.59
NMCSs-15-6003632740.580.1682.929.817.27
NMCSs-15-8006535321.080.3290.855.064.09
Tab.1  The pore characteristics and surface C, N, O contents of the NMCSs-x-y
Fig.6  (a) TG curves of the as-prepared NMCSs, (b) XRD patterns of the NMCSs carbonized at different temperatures, (c) N2 adsorption–desorption isotherms and (d) the corresponding pore size distribution curves of NMCSs-15-y. The dV/dD value was shifted by 0.02 and 0.04 cm3·g–1·nm–1 for NMCSs-15-700 and NMCSs-15-800, respectively.
Fig.7  XPS spectra of the NMCSs-15-y. (a) Survey spectrum, (b) C 1s, (c) N 1s, (d) O 1s.
Fig.8  Electrochemical properties of NMCSs-x-y in a three-electrode system. (a) CV curves at 20 mV·s–1 (SCE: saturated calomel electrode); (b) galvanostatic charge-discharge (GCD) curves at 1 A·g–1; (c) GCD curves of NMCSs-15-700 at different current densities; (d) specific capacitance at various current densities (0.5–20 A·g–1); (e) electrical impedance spectroscopy (EIS) plots of NMCSs; (f) cycling stability of NMCSs-15-700 (1 A·g–1).
MaterialsElectrolytesCg/(F·g–1)a)Rate performance/%a)Ref.
Ordered mesoporous carbon nanospheres6 mol·L–1 KOH231 (1)66 (50)[19]
Porous carbon spheres without KOH activation6 mol·L–1 KOH232 (1)~61 (10)[34]
B-doped carbon spheres6 mol·L–1 KOH235 (0.5)62 (30)[35]
Carbon spheres from hemicelluloses6 mol·L–1 KOH218 (0.2)63 (10)[36]
B/N-doped ordered mesoporous carbon spheres6 mol·L–1 KOH272 (0.5)80.8 (10)[37]
Carbon spheres1 mol·L–1 H2SO4207.5 (0.1)63 (5)[38]
N,O-codoped multilocular carbon nanospheres6 mol·L–1 KOH186 (0.5)73.8 (20)[39]
N-doped microporous carbon nanospheres1 mol·L–1 H2SO4192 (0.5)81 (10)[40]
Micro-mesoporous carbon spheres6 mol·L–1 KOH270 (0.2)67 (5)[41]
N,S-codoped hollow carbon microspheres6 mol·L–1 KOH230 (0.5)74 (20)[42]
N-doped hollow carbon nanospheres1 mol·L–1 HCl275.5 (1)54.4 (20)[43]
N-containing hierarchical porous carbon spheres7 mol·L–1 KOH276 (0.1)55 (20)[44]
N-doped mesoporous carbon6 mol·L–1 KOH301 (0.2)69.8 (5)[45]
NMCSs-15-7006 mol·L–1 KOH265 (0.5)75 (10)This work
238 (1)82 (20)This work
Tab.2  Comparison of the electrochemical performances of NMCSs-15-700 with other reported carbon nanospheres
Fig.9  Electrochemical performance of NMCSs-15-700 in two-electrode system with PVA/KOH gel all-solid-state electrolytes. (a) Schematic illustration of the symmetric all-solid-state supercapacitor; (b) CV curves at different scan rates; (c) GCD curves at 0.2–10 A·g–1; (d) cycling stability of symmetric supercapacitor device at 0.5 A·g–1; (e) Ragone plots of NMCSs-15-700 symmetric supercapacitors; (f) LEDs powered by three symmetric capacitors in series based on NMCSs-15-700 electrode.
1 S Cao, H Zhang, Y Zhao, Y Zhao. Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience, 2021, 1: 28–43
2 Z Jiao, Y Chen, M Du, M Demir, F Yan, W Xia, Y Zhang, C Wang, M Gu, X Zhang, J Zou. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: a novel 3D/3D structure for hybrid supercapacitor electrodes. Journal of Colloid and Interface Science, 2023, 633: 723–736
https://doi.org/10.1016/j.jcis.2022.11.131
3 C Li, G Jiang, M Demir, Y Sun, R Wang, T Liu. Preparation of rGO/MXene@NiCo-P and rGO/MXene@Fe2O3 positive and negative composite electrodes for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56: 105986
https://doi.org/10.1016/j.est.2022.105986
4 M Zhou, S X Yan, Q Wang, M X Tan, D Y Wang, Z Q Yu, S H Luo, Y H Zhang, X Liu. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Metals, 2022, 41(7): 2280–2291
https://doi.org/10.1007/s12598-021-01957-0
5 X H Yu, J L Yi, R L Zhang, F Y Wang, L Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407
https://doi.org/10.1007/s11705-021-2097-z
6 J Du, A Chen, L Liu, B Li, Y Zhang. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon, 2020, 160: 265–272
https://doi.org/10.1016/j.carbon.2020.01.018
7 R Zhou, X Wang, R Zhou, J Weerasinghe, T Zhang, Y Xin, H Wang, P Cullen, H Wang, K K Ostrikov. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Frontiers of Chemical Science and Engineering, 2022, 16(4): 475–483
https://doi.org/10.1007/s11705-021-2070-x
8 Y X Yang, K K Ge, S ur Rehman, H Bi. Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41(12): 3957–3975
https://doi.org/10.1007/s12598-022-02091-1
9 X Zhang, Y Wang, Y Du, M Qing, F Yu, Z Q Tian, P K Shen. Highly active N, S codoped hierarchical porous carbon nanospheres from green and template-free method for supercapacitors and oxygen reduction reaction. Electrochimica Acta, 2019, 318: 272–280
https://doi.org/10.1016/j.electacta.2019.06.081
10 B Krüner, A Schreiber, A Tolosa, A Quade, F Badaczewski, T Pfaff, B M Smarsly, V Presser. Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon, 2018, 132: 220–231
https://doi.org/10.1016/j.carbon.2018.02.029
11 S Xiong, J Fan, Y Wang, J Zhu, J Yu, Z Hu. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5(43): 18242–18252
https://doi.org/10.1039/C7TA05880B
12 B Liu, Q Zhang, Z Wang, L Li, Z Jin, C Wang, L Zhang, L Chen, Z Su. Nitrogen and sulfur-codoped porous carbon nanospheres with hierarchical micromesoporous structures and an ultralarge pore volume for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2020, 12(7): 8225–8232
https://doi.org/10.1021/acsami.9b20473
13 C Liu, J Wang, J Li, M Zeng, R Luo, J Shen, X Sun, W Han, L Wang. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(11): 7194–7204
https://doi.org/10.1021/acsami.6b02404
14 Y Qiu, M Hou, J Gao, H Zhai, H Liu, M Jin, X Liu, L Lai. One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid state micro-supercapacitors. Small, 2019, 15(45): 1903836
https://doi.org/10.1002/smll.201903836
15 X Q Zhang, A H Lu, Q Sun, X F Yu, J Y Chen, W C Li. Unconventional synthesis of large pore ordered mesoporous carbon nanospheres for ionic liquid-based supercapacitors. ACS Applied Energy Materials, 2018, 1(11): 5999–6005
https://doi.org/10.1021/acsaem.8b01051
16 J Liu, T Y Yang, D W Wang, G Q Lu, D Zhao, S Z Qiao. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798
https://doi.org/10.1038/ncomms3798
17 N Li, B Qin, H Kang, N Cai, S Huang, Q Xiao. Engineering hollow carbon spheres: directly from solid resin spheres to porous hollow carbon spheres via air induced linker cleaving. Nanoscale, 2021, 13(32): 13873–13881
https://doi.org/10.1039/D1NR03392A
18 G Xin, M Wang, W Zhang, J Song, B Zhang. Preparation of high-capacitance N, S co-doped carbon nanospheres with hierarchical pores as supercapacitors. Electrochimica Acta, 2018, 291: 168–176
https://doi.org/10.1016/j.electacta.2018.08.137
19 J G Wang, H Liu, H Sun, W Hua, H Wang, X Liu, B Wei. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92
https://doi.org/10.1016/j.carbon.2017.10.084
20 F Zhang, X Liu, M Yang, X Cao, X Huang, Y Tian, F Zhang, H Li. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 2020, 69: 104443
https://doi.org/10.1016/j.nanoen.2019.104443
21 R Liu, S M Mahurin, C Li, R R Unocic, J C Idrobo, H J Gao, S J Pennycook, S Dai. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angewandte Chemie International Edition, 2011, 50(30): 6799–6802
https://doi.org/10.1002/anie.201102070
22 J Tang, J Liu, C Li, Y Li, M O Tade, S Dai, Y Yamauchi. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angewandte Chemie, 2015, 54(2): 588–593
https://doi.org/10.1002/ange.201407629
23 J Tang, J Wang, L K Shrestha, M S A Hossain, Z A Alothman, Y Yamauchi, K Ariga. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS Applied Materials & Interfaces, 2017, 9(22): 18986–18993
https://doi.org/10.1021/acsami.7b04967
24 Z Song, D Zhu, D Xue, J Yan, X Chai, W Xiong, Z Wang, Y Lv, T Cao, M Liu, L Gan. Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors. ACS Applied Energy Materials, 2018, 8(1): 4293–4303
https://doi.org/10.1021/acsaem.8b00928
25 Y P Zhu, Y P Liu, Z Y Yuan. Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. Chemical Communications, 2016, 52(10): 2118–2121
https://doi.org/10.1039/C5CC08439C
26 K S W Sing. Reporting phisorption data for gas/solid systems. Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
27 J Li, S Wang, Y Ren, Z Ren, Y Qiu, J Yu. Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochimica Acta, 2014, 149: 56–64
https://doi.org/10.1016/j.electacta.2014.10.089
28 Y Wang, Y Song, Y Xia. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950
https://doi.org/10.1039/C5CS00580A
29 M Wang, B Liu, H Chen, D Yang, H Li. N/O codoped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11219–11227
https://doi.org/10.1021/acssuschemeng.9b00541
30 W Wei, Z Chen, Y Zhang, J Chen, L Wan, C Du, M Xie, X Guo. Full-faradaicactive nitrogen species doping enables high-energy-density carbon-based supercapacitor. Journal of Energy Chemistry, 2020, 48: 277–284
https://doi.org/10.1016/j.jechem.2020.02.011
31 J D Orlando, R M A P Lima, L Li, S A Sydlik, H P de Oliveira. Electrochemical performance of N-doped carbon-based electrodes for supercapacitors. ACS Applied Electronic Materials, 2022, 4(10): 5040–5054
https://doi.org/10.1021/acsaelm.2c01059
32 J Li, K Han, D Wang, Z Teng, Y Cao, J Qi, M Li, M Wang. Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164: 42–50
https://doi.org/10.1016/j.carbon.2020.03.044
33 Y Mo, J Du, H Lv, Y Zhang, A Chen. N-doped mesoporous carbon nanosheets for supercapacitors with high performance. Diamond and Related Materials, 2021, 111: 108206
https://doi.org/10.1016/j.diamond.2020.108206
34 D Xue, D Zhu, W Xiong, T Cao, Z Wang, Y Lv, L Li, M Liu, L Gan. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7024–7034
https://doi.org/10.1021/acssuschemeng.8b06774
35 S Huang, D D Ma, X Wang, Y Shi, R Xun, H Chen, H Guan, Y Tong. A space-sacrificed pyrolysis strategy for boron-doped carbon spheres with high supercapacitor performance. Journal of Colloid and Interface Science, 2022, 608: 334–343
https://doi.org/10.1016/j.jcis.2021.09.179
36 Y Wang, C Lu, X Cao, Q Wang, G Yang, J Chen. Porous carbon spheres derived from hemicelluloses for supercapacitor application. International Journal of Molecular Sciences, 2022, 23(13): 7101
https://doi.org/10.3390/ijms23137101
37 J Du, Y Zhang, H Lv, A Chen. N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587: 780–788
https://doi.org/10.1016/j.jcis.2020.11.037
38 H Wang, H Zhou, M Gao, Y Zhu, H Liu, L Gao, M Wu. Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochimica Acta, 2019, 298: 552–560
https://doi.org/10.1016/j.electacta.2018.12.070
39 C Zhou, X Chen, X Liu, J Zhou, Z Ma, M Jia, H Song. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors. Electrochimica Acta, 2017, 236: 53–60
https://doi.org/10.1016/j.electacta.2017.03.107
40 S Zheng, Y Cui, J Zhang, Y Gu, X Shi, C Peng, D Wang. Nitrogen doped microporous carbon nanospheres derived from chitin nanogels as attractive materials for supercapacitors. RSC Advances, 2019, 9(19): 10976–10982
https://doi.org/10.1039/C9RA00683D
41 G Wang, J Qin, Y Zhao, J Wei. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor. Journal of Colloid and Interface Science, 2019, 544: 241–248
https://doi.org/10.1016/j.jcis.2019.03.001
42 C C Ke, N Zhang, F Liu, Q Yu, F Y Wang, L Liu, R L Zhang, X Liu, R C Zeng. Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Applied Surface Science, 2019, 484: 716–725
https://doi.org/10.1016/j.apsusc.2019.04.132
43 Z Wang, H Qiang, Z Zhu, J Liu, C Chen, D Zhang. Facile synthesis of nitrogen-doped mesoporous hollow carbon nanospheres for high-performance supercapacitors. ChemElectroChem, 2018, 5(16): 2242–2249
https://doi.org/10.1002/celc.201800597
44 J Pang, W Zhang, H Zhang, J Zhang, H Zhang, G Cao, M Han, Y Yang. Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon, 2018, 132: 280–293
https://doi.org/10.1016/j.carbon.2018.02.077
45 T Wang, Y Sun, L Zhang, K Li, Y Yi, S Song, M Li, Z A Qiao, S Dai. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Advanced Materials, 2019, 31(16): 1807876
https://doi.org/10.1002/adma.201807876
46 X Yang, Y Li, P Zhang, L Sun, X Ren, H Mi. Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157: 70–79
https://doi.org/10.1016/j.carbon.2019.10.008
47 H Zhou, Y Zhou, L Li, Y Li, X Liu, P Zhao, B Gao. Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9281–9290
https://doi.org/10.1021/acssuschemeng.9b00279
48 F Liu, Y Gao, C Zhang, H Huang, C Yan, X Chu, Z Xu, Z Wang, H Zhang, X Xiao, W Yang. Highly microporous carbon with nitrogen-doping derived from natural biowaste for high performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 2019, 548: 322–332
https://doi.org/10.1016/j.jcis.2019.04.005
49 Y Qiao, G Liu, R Xu, R Hu, L Liu, G Jiang, M Demir, P Ma. SrFe1–xZrxO3–δ perovskite oxides as negative electrodes for supercapacitors. Electrochimica Acta, 2023, 437: 14152
https://doi.org/10.1016/j.electacta.2022.141527
[1] FCE-23006-OF-ZN_suppl_1 Download
[1] Xiu Gao, Beining Luo, Yanping Hong, Peihang He, Zedong Zhang, Guoqiang Wu. Controllable synthesis of a large TS-1 catalyst for clean epoxidation of a C=C double bond under mild conditions[J]. Front. Chem. Sci. Eng., 2023, 17(6): 772-783.
[2] Xuepeng Ni, Kunming Li, Changlei Li, Qianqian Wu, Chenglin Liu, Huifang Chen, Qilin Wu, Anqi Ju. Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(6): 691-703.
[3] Yongsheng Zhang, Xiaomeng Yang, Jinpan Bao, Hang Qian, Dong Sui, Jianshe Wang, Chunbao Charles Xu, Yanfang Huang. Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes for high-performance supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(5): 504-515.
[4] Wenjing Zhang, Xiaoxue Yuan, Xuehua Yan, Mingyu You, Hui Jiang, Jieyu Miao, Yanli Li, Wending Zhou, Yihan Zhu, Xiaonong Cheng. Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide with remarkable performance in the supercapacitor[J]. Front. Chem. Sci. Eng., 2022, 16(3): 420-432.
[5] Yuemin Lin, Yuanyuan Zhang, Renfeng Nie, Kai Zhou, Yao Ma, Mingjie Liu, Dan Lu, Zongbi Bao, Qiwei Yang, Yiwen Yang, Qilong Ren, Zhiguo Zhang. Room-temperature hydrogenation of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1782-1792.
[6] Xiqing Luo, Miaomiao Jiang, Kun Shi, Zhangxian Chen, Zeheng Yang, Weixin Zhang. Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1322-1331.
[7] Wanyue Liu, Xiaoqin Liu, Jinming Chang, Feng Jiang, Shishi Pang, Hejun Gao, Yunwen Liao, Sheng Yu. Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1185-1196.
[8] Yunrui Tian, Haishun Du, Shatila Sarwar, Wenjie Dong, Yayun Zheng, Shumin Wang, Qingping Guo, Jujie Luo, Xinyu Zhang. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach[J]. Front. Chem. Sci. Eng., 2021, 15(4): 1021-1032.
[9] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[10] Huaping Zhao, Long Liu, Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Front. Chem. Sci. Eng., 2018, 12(3): 481-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed