Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 1809-1836    https://doi.org/10.1007/s11705-023-2339-3
REVIEW ARTICLE
From plasma to plasmonics: toward sustainable and clean water production through membranes
Farah Abuhatab1,2, Omar Khalifa1,2,3, Husam Al Araj2, Shadi W. Hasan1,2()
1. Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates
2. Department of Chemical Engineering, Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates
3. Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
 Download: PDF(4110 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.

Keywords water treatment      membrane-based process      plasma treatment      plasma polymerization      plasmonic      light-to-heat conversion     
Corresponding Author(s): Shadi W. Hasan   
Online First Date: 31 July 2023    Issue Date: 30 November 2023
 Cite this article:   
Farah Abuhatab,Omar Khalifa,Husam Al Araj, et al. From plasma to plasmonics: toward sustainable and clean water production through membranes[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1809-1836.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2339-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/1809
Fig.1  Illustration of TP in the DCMD system.
Fig.2  Membrane modification techniques.
Fig.3  Modes of plasma treatment: (a) ablation, or (b) deposition.
ApplicationPlasma gasMembrane/substrateMembrane performanceChange in membrane morphologyRef.
Physical changeChemical change
Pressure-drivenMF? Oxidative: O2PPa) membrane? Reduction in contact angle-superhydrophillic membrane? Etching; a significant increase in the void volume? Oxygen implantation membrane surface[69]
? Increase in the water flux
? Oxidative: H2OPC-TEb) and PETc)-TE membranes? Reduction in contact angle? No significant changes in the membrane morphology? Oxygen implantation membrane surface[70]
? Increase in the water flux
? Oxidative: O2PP membrane? Reduction in contact angle? No significant changes in the membrane morphology? O2 containing polar groups membrane surface[71]
? Decrease in tensile strength and elongation
? Lower flux reduction compared to untreated membrane
UF? Oxidative: CO2PSF membrane? Reduction in contact angle? No significant changes in the membrane morphology? Formation of hydroxyl/carbonyl groups[72]
? Increase in the flux recovery
? Increase in the bio-fouling properties
? Oxidative: CO2PESd) membrane? Increase in the water bubble point? Etching and redeposition? Formation of hydroxyl/carbonyl groups[73]
? Increase glass-transition temperature
? Oxidative: H2OPSF membrane? Reduction in contact angle? Increase in average pore size? Formation of hydroxyl groups[74]
? Increase in the water flux
? Oxidative: H2OPES and PEe) membranes? Reduction in contact angle? No significant changes in the membrane morphology? Formation of oxygen-containing functional groups[75]
? Increase in the water flux
? Reductive: NH3PP membrane? Reduction in contact angle? Formation of hydroxyl/carbonyl groups[76]
? Decrease in tensile strength and elongation
? Lower flux reduction compared to untreated membrane
? Reductive: NH3PP membrane? Reduction in contact angle? Increase in average pore size? Surface hydrophilization (N2 and O2)[77]
? Increase in the water flux
? Increase in the anti-fouling properties
? Reductive: NH3PAN membrane? Reduction in contact angle? No significant changes in the membrane morphology? Surface hydrophilization (N2 and O2)[68]
? Increase in the water flux
? Decrease in the FDR
? Increase in the FRR
? Reductive: NH3PSF membrane? Reduction in contact angle? Increase in average pore size? Surface hydrophilization (N2 and O2)[67]
? Mixture of NH3/Ar? Increase in the water flux? Etching: smoother surface
? Increase in the anti-fouling properties? Etching: membrane cross-section
? Reductive: NH3PES membrane? Reduction in contact angle? Etching: membrane cross-section? Surface hydrophilization (N2 and O2)[78]
? Mixture of NH3/O2? Increase in the water flux
? Increase in flux recovery
? Increase in the anti-fouling properties
Pressure-drivenNF? Oxidative: AirCommercial polyamide-based TFCf) membrane? Reduction in contact angle? Etching: smoother surface? Surface hydrophilization (N2 and O2)[79]
? Inert: Ar? Increase in the water flux
? Mixture Air/Ar? Decrease in the membrane selectivity
? Decrease in the salt rejection
? Oxidative: O2rGO-CNFg) composite membrane? Reduction in contact angle? Etching: create nanopores? No chemical changes detected[80]
? Increase in the water flux
? Inert: ArPSF-PPEESh) composite membrane? Slight increase in contact angle? Etching; decrease in pore size and porosity? No chemical changes detected[81]
? Reductive: N2? Decrease in the water flux? Increase roughness
? Increase in the salt rejection
? Reductive: NH3Commercial polyamide-based TFC membrane? Reduction in contact angle? No physical changes detected? Surface hydrophilization (N2-containing functional groups)[28]
? Increase in the water flux
? Increase in the salt rejection
? Increase in the organic anti-fouling properties
RO? Inert: ArPolyamide-based TFC membrane? Reduction in contact angle? Reduced roughness; flattening and fusing of protrusions? Formation of polar groups as a result of etching and redeposition[82]
? Increase in the water flux
? Increase in the salt rejection
? Inert: HePolyamide-based TFC membrane? Reduction in contact angle? Rough surface when applying He? Formation of nitrogen and oxygen functional groups[83]
? Oxidative: H2O? Increase in the water flux? Smooth surface when applying H2O
? Increase in the salt rejection
? Oxidative: O2TFC polyamide modified with natural clinoptilolite? Reduction in contact angle? Decrease in surface roughness? Formation of Si–OH–Al bonds[84]
? Increase in the water flux
? High fouling recovery ratio
? Mixture of He/H2 then O2TFC polyamide nano-structured membrane with PMMAi) and PAAmj)? High fouling resistance? Decrease in surface roughness[85]
? High permeability recovery
? Polymerizable: diglymePP feed spacer? Biofouling minimization? Formation of hydroxyl groups[86]
? Polymerizable: triglymeCommercial polyamide-based TFC membrane? Reduction in contact angle? Increase in surface roughness? Deposition of thin film[87]
? Increase in the water flux
? Improvement in membrane anti-fouling performance
? Polymerizable: MACommercial polyamide-based TFC membrane? Reduction in contact angle? Decrease in surface roughness? Formation of functional groups[88]
? Increase in the water flux
? Reduction in salt rejection
? Polymerizable: VIMk)Commercial polyamide-based TFC membrane? Reduction in contact angle? Decrease in surface roughness? Formation of functional groups[88]
? Increase in the water flux
? Reduction in salt rejection
? Inert: ArHAP particles incorporated into CA membrane? Increase in the water flux? Formation of free radicals? Introduce hydroxyl functional groups on the surface of Hap particles[30]
? Polymerizable: CH4? Reduction in salt rejection
Pressure-drivenRO? Oxidative: O2Commercial polyamide-based TFC membrane? Reduction in contact angle? Introduce functional groups on the surface[89]
? Inert: Ar? Increase in the water flux
? Polymerizable: HEMAl), MPCm), SBMAn)? Improvement in membrane anti-fouling performance
FO? Inert: ArCommercial CTAo) membrane? Reduction in contact angle? Formation of free radicals? Introduce functional groups on the surface[90]
? Oxidative: CO2? Increase in water flux
? Polymerizable: AAp)? Excellent anti-protein fouling properties
Tab.1  Application of cold plasma treatment at low pressure for different pressure-driven membrane-based water treatment processes
Fig.4  FTIR spectra of (a) HAP and (b) HAPf particles. Reprinted with permission from ref [30], copyright 2019, Elsevier.
ApplicationPlasma gasMembranePurpose of modificationChange in membrane morphologyRef.
Physical changeChemical change
Thermal-drivenMDDCMD? Reductive: ArPPFouling mitigationEtching; increasing porosity and roughnessSurface hydrophilization[91]
? Mixture of Ar/O2
? Inert: ArPTFEWettability mitigationEtching; increasing porosity and roughnessFormation of fluorinated layer[31]
? Oxidative: Air
? Oxidative: H2O
? Inert: ArPVDFScaling mitigationEtching; minor change in pore sizeFormation of fluorinated layer[93]
? Polymerizable: CF4
? Mixture of N2/H2PTFEPermeability enhancementEtching; minor change in porosity and roughnessSurface hydrophilization[94]
? Polymerizable: OFCBb)CNa)Increase hydrophobicityFormation of fluorinated layer[95]
? Polymerizable: CF4PESWettability mitigationFormation of fluorinated layer[96]
? Polymerizable: CF4PVDFWettability mitigationEtching; minor change in pore sizeFormation of fluorinated layer[97]
? Polymerizable: CF4PSFWettability mitigationNo detected changesFormation of fluorinated layer[98]
AGMDc)? Polymerizable: CF4PVDFWettability mitigationEtching; minor change in porosityFormation of fluorinated layer[99]
VMDd)? Inert: ArPANPermeability enhancementEtching: increase pore size, and roughnessFormation of fluorinated layer[100]
? Polymerizable: F8
Tab.2  Application of cold plasma treatment (at low pressure) on thermal-driven membrane water treatment processes
Fig.5  Characteristics of C-PVDF, MP-PVDF and CF4-MP-PVDF membranes before and after DCMD test. (A-1) and (A-2): contact angles and sliding angles of three membranes before and after DCMD. Reprinted with permission from ref [93], copyright 2019, Elsevier.
Fig.6  Plasmonic nanomaterials that are reviewed in this work.
Fig.7  Fundamentals of selecting plasmonic material.
Fig.8  The volumetric system.
Plasmonic material designPlasmonic materialSynthesis methodApplicationSolar-thermal conversion efficiency/%Solar-vapor conversion efficiency/%Ref.
SingleAu sphericalCitrate-reductionDASC78[131]
Au sphericalCitrate-reductionSSG6516[127]
Au quasi sphereSeed-mediatedDASC61.7[106]
Au thorny
Au sphericalCitrate reductionSSG95[132]
Ag sphericalPhotochemical transformationDASC84.7[133]
TiNNAAGMD50.5[134]
CompositesSiO2/Ag-MWCNTa)Reduction by Sn2+DASC97.6[135]
Ag-Au/ZNGsb)Direct carbonation of ZIF-8c)DASC74.4[136]
rGO sheets decorated with Ag NPsWet-chemicalDASC77[137]
Ag loaded on TiO2Photochemical impregnationDASC20.9[138]
Au loaded on TiNImpregnation-reductionDASC90[139]
Tab.3  Plasmonic nanofluids applied in DASCs and water desalination/purification processes
Fig.9  Methods of modifying interfacial system with plasmonic material: (a) embedding and (2) deposition.
Fig.10  The difference between outlet and inlet feed temperature (30 °C) for 0.5 mol·L–1 NaCl solution. Reprinted with permission from ref [148], copyright 2019, Elsevier.
Fig.11  3D-self-assembly structure. Reprinted with permission from ref [111], copyright 2016, Springer Nature.
Fig.12  The conceptual design of SVGMD. Reprinted with permission from ref [105], copyright 2019, Springer Nature.
Plasmonic material classificationPlasmonic materialSubstrateStructural designApplicationIntensity /(kW·m–2)Evaporation rate /(kg·m–2·h–1)Energy efficiency/%Ref.
MetallicAuAAOa) membraneBlack gold thin film coated on membraneSSG115.6257[155]
PBONFb) filmEmbedded in Multilayer composite filmSSG11.42483[156]
PP Filter paperDeposited on filter paperSSG1011.9789[157]
Filter paperDeposited on filter paperSSG2.31.1887[158]
SWNT porous filmDeposited on filmSSG1182[159]
AgThin filmSeeded growth on thin filmSSG11.3895.2[160]
PVDF membraneEmbeddingVMD125.7 L·m–2·h–128.4[148]
PVDF membraneEmbeddingSGMDUV radiation8.6[161]
PVDF membraneEmbedding + bilayerDCMDUV radiation2.553[162]
TiO membraneDouble layerPMD10.8260[163]
CuCellulose membraneDouble layerSSG273[164]
AlAAO membrane3D structureSSG1157[111]
InEmbeddingSSG171.6[165]
SemiconductorsCopper-basedCuSPE membraneEmbeddingSSG10.38363.9[166]
Cu2?xSc)PVA gelEmbeddingSSG11.27087[167]
Cu9S5d)MCEe) membraneDouble layerSSG160.1[168]
Cu9S5PVDF membraneEmbeddingSSG11.17380[117]
CuCr2O4QFGf) membraneEmbeddingSSG11.31988[169]
TMNTiNCWg)Double layerSSG180[170]
TiNAA membraneDouble layerSSG6.368.7387.7[171]
TiNAAO membraneDouble layerSSG11.1078[172]
TiNAAO membraneDouble layerSSG11.48 L·m–2·h–192[173]
ZrNAAO membraneDouble layerSSG11.2788[172]
HfNAAO membraneDouble layerSSG11.3695[172]
TiNPVDF membraneDouble layerSVGMD11.3484.5[174]
TiNPVDF membraneDouble layerDCMD11.0166.7[175]
TiNPVDF membraneDouble layerAGMD10.9464.1[56]
TMOsWOPLAh) membraneEmbeddingSSGIR-lamp3.8181.39[176]
MoOxPTFE membraneDouble layerSSG11.25585.6[122]
MoO3?xALPi) paperDouble layerSSG10.9962.1[120]
H-TiOxPolymeric filmEmbeddingSSG11.4989.1[177]
Carbon-basedGraphenePDASelf-floating membraneSSG11.3790[178]
MXenesTi3C2PVDF membraneDouble layerSSG184[149]
Ti3C2MCE membraneDouble layerSSG11.3171[179]
Ti3C2TxCellulose membraneDouble layerSSG11.4485.8[180]
HM-Mo5-N6SSG12.48114.6[181]
Mixture-3D structureAu/rGO-GOAlumina Nanowire Haze Structure3D structureSSG564[182]
Au/TiO2AAO membrane3D structureSSG14.4[183]
Au/TiO2Polymeric membraneDouble layerSSG11.3 g·s–1[184]
Ag/PdwoodDouble layerSSG34.8295.26[185]
Mixture-3D structureAg/rGOPVA gel3D structureSSG13.295.67[186]
Ag/SiO2TiO2 shell3D structureSSG15.68 L·m–2·h–1[187]
Au/AgCottonEmbeddingSSG11.486.3[153]
Au/Ag/GOPUj) foam3D structureSSG1163[188]
Al/TiO2PVDF membraneEmbeddingSSG10.577.5[189]
Ti3C2/MWCNTHydrophilic mixed cellulose ester filter membraneEmbeddingSSG11.5590.8[190]
Tab.4  Various plasmonic-based membranes utilized in SSG and PMD processes
1 J Lou, Y Liu, Z Wang, D Zhao, C Song, J Wu, N Dasgupta, W Zhang, D Zhang, P Tao. et al.. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636
https://doi.org/10.1021/acsami.6b04606
2 S Al-Obaidani, E Curcio, F Macedonio, G Di Profio, H Al-Hinai, E Drioli. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98
https://doi.org/10.1016/j.memsci.2008.06.006
3 X Chen, N Y Yip. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environmental Science & Technology, 2018, 52(4): 2242–2250
https://doi.org/10.1021/acs.est.7b05774
4 E Jones, M Qadir, M T H van Vliet, V Smakhtin, S Kang. The state of desalination and brine production: a global outlook. Science of the Total Environment, 2019, 657: 1343–1356
https://doi.org/10.1016/j.scitotenv.2018.12.076
5 N Ghaffour, S Soukane, J G Lee, Y Kim, A Alpatova. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Applied Energy, 2019, 254: 113698
https://doi.org/10.1016/j.apenergy.2019.113698
6 E Filloux, J Wang, M Pidou, W Gernjak, Z Yuan. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495: 276–283
https://doi.org/10.1016/j.memsci.2015.08.034
7 W Guo, H H Ngo, J Li. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34
https://doi.org/10.1016/j.biortech.2012.04.089
8 S Lee, C H Lee. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000, 34(15): 3854–3866
https://doi.org/10.1016/S0043-1354(00)00142-1
9 S Tang, Z Wang, Z Wu, Q Zhou. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 2010, 178(1-3): 377–384
https://doi.org/10.1016/j.jhazmat.2010.01.090
10 P Xu, C Bellona, J E Drewes. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1-2): 111–121
https://doi.org/10.1016/j.memsci.2010.02.037
11 S G Yiantsios, A J Karabelas. The effect of colloid stability on membrane fouling. Desalination, 1998, 118(1-3): 143–152
https://doi.org/10.1016/S0011-9164(98)00110-6
12 L Martínez-Díez, M I Vazquez-Gonzalez. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273
https://doi.org/10.1016/S0376-7388(98)00349-4
13 P Wang, T S Chung. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56
https://doi.org/10.1016/j.memsci.2014.09.016
14 L Martinez-Diez, M I Vázquez-González. Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4128–4135
https://doi.org/10.1021/ie970911q
15 W Gao, H Liang, J Ma, M Han, Z Chen, Z Han, G Li. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 2011, 272(1-3): 1–8
https://doi.org/10.1016/j.desal.2011.01.051
16 A G Razaqpur, Y Wang, X Liao, Y Liao, R Wang. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Research, 2021, 201: 117299
https://doi.org/10.1016/j.watres.2021.117299
17 H B Madalosso, R Machado, D Hotza, C Marangoni. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Advanced Engineering Materials, 2021, 23(6): 2001456
https://doi.org/10.1002/adem.202001456
18 G Liu, J Xu, K Wang. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284
https://doi.org/10.1016/j.nanoen.2017.09.005
19 S Mansour, A Giwa, S W Hasan. Novel graphene nanoplatelets-coated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20
https://doi.org/10.1016/j.desal.2018.04.026
20 G Kang, Y Cao. Application and modification of poly(vinylidenefluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463: 145–165
https://doi.org/10.1016/j.memsci.2014.03.055
21 N F Himma, N Prasetya, S Anisah, I G Wenten. Superhydrophobic membrane: progress in preparation and its separation properties. Reviews in Chemical Engineering, 2019, 35(2): 211–238
https://doi.org/10.1515/revce-2017-0030
22 Z Cui, Y Zhang, X Li, X Wang, E Drioli, Z Wang, S Zhao. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47
https://doi.org/10.1016/j.desal.2017.11.040
23 S Pedram, H R Mortaheb, F Arefi-Khonsari. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology, 2018, 39(2): 157–171
https://doi.org/10.1080/09593330.2017.1296896
24 C Yang, M Tian, Y Xie, X M Li, B Zhao, T He, J Liu. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2015, 482: 25–32
https://doi.org/10.1016/j.memsci.2015.01.059
25 U G M Ekanayake, M Barclay, D H Seo, M J Park, J MacLeod, A P O’Mullane, N Motta, H K Shon, K Ostrikov. Utilization of plasma in water desalination and purification. Desalination, 2021, 500: 114903
https://doi.org/10.1016/j.desal.2020.114903
26 K Zarshenas, A Raisi, A Aroujalian. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Advances, 2015, 5(25): 19760–19772
https://doi.org/10.1039/C4RA15547E
27 K C Khulbe, C Feng, T Matsuura. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science, 2010, 115(2): 855–895
https://doi.org/10.1002/app.31108
28 E S Kim, Q Yu, B Deng. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871
https://doi.org/10.1016/j.apsusc.2011.06.059
29 J Y Lai, Y C Chao. Plasma-modified nylon 4 membranes for reverse osmosis desalination. Journal of Applied Polymer Science, 1990, 39(1112): 2293–2303
https://doi.org/10.1002/app.1990.070391109
30 A L Ohland, V M M Salim, C P Borges. Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93
https://doi.org/10.1016/j.desal.2018.11.008
31 L F Dumée, H Alglave, T Chaffraix, B Lin, K Magniez, J Schütz. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363: 273–285
https://doi.org/10.1016/j.apsusc.2015.12.034
32 Z Zhao, S Shi, H Cao, Y Li. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane. Desalination and Water Treatment, 2017, 89: 77–86
https://doi.org/10.5004/dwt.2017.21391
33 Y Fu, G Wang, X Ming, X Liu, B Hou, T Mei, J Li, J Wang, X Wang. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130: 250–256
https://doi.org/10.1016/j.carbon.2017.12.124
34 W Kong, G Wang, M Zhang, X Duan, J Hu, X Duan. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459: 1–9
https://doi.org/10.1016/j.desal.2019.02.016
35 Oliveira Barauna J B F De, C S Pereira, I A Gonçalves, Oliveira Vitoriano J De, C A Junior. Sodium chloride crystallization by electric discharge in brine. Materials Research, 2017, 20(suppl 2): 215–220
https://doi.org/10.1590/1980-5373-mr-2017-0108
36 U G M Ekanayake, D H Seo, K Faershteyn, A P O’Mullane, H Shon, J MacLeod, D Golberg, K Ostrikov. Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25: e00181
https://doi.org/10.1016/j.susmat.2020.e00181
37 J C Kruithof, P C Kamp, B J Martijn. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280
https://doi.org/10.1080/01919510701459311
38 D C Johnson, J P Bzdek, C R Fahrenbruck, J C Chandler, B Bisha, L D Goodridge, B M Hybertson. An innovative non-thermal plasma reactor to eliminate microorganisms in water. Desalination and Water Treatment, 2016, 57(18): 8097–8108
https://doi.org/10.1080/19443994.2015.1024752
39 N Ulbin-Figlewicz, A Jarmoluk, K Marycz. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 2015, 65(3): 1537–1546
https://doi.org/10.1007/s13213-014-0992-y
40 S Daer, J Kharraz, A Giwa, S W Hasan. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 2015, 367: 37–48
https://doi.org/10.1016/j.desal.2015.03.030
41 P Kallem, I Othman, M Ouda, S W Hasan, I AlNashef, F Banat. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 2021, 148: 813–824
https://doi.org/10.1016/j.psep.2021.02.002
42 N A Alenazi, M A Hussein, K A Alamry, A M Asiri. Modified polyether-sulfone membrane: a mini review. Designed Monomers and Polymers, 2017, 20(1): 532–546
https://doi.org/10.1080/15685551.2017.1398208
43 B Van der Bruggen. Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, 2009, 114(1): 630–642
https://doi.org/10.1002/app.30578
44 E AbdulkarimY IbrahimS HasanV NaddeoF Banat. Novel polyethersulfone (PES) alpha-zirconium phosphate (α-ZrP) ion exchange mixed matrix membranes for effective removal of heavy metals from wastewater. PES, 10: 0 International Conference on Environmental Science and Technology 2019
45 Z W Seh, S Liu, M Low, S Y Zhang, Z Liu, A Mlayah, M Y Han. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
https://doi.org/10.1002/adma.201104241
46 L Zhu, M Gao, C K N Peh, G W Ho. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
https://doi.org/10.1039/C7MH01064H
47 X Jin, Y Li, W Li, Y Zheng, Z Fan, X Han, W Wang, T Lin, Z Zhu. Nanomaterial design for efficient solar-driven steam generation. ACS Applied Energy Materials, 2019, 2(9): 6112–6126
https://doi.org/10.1021/acsaem.9b00934
48 M Gao, L Zhu, C K Peh, G W Ho. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864
https://doi.org/10.1039/C8EE01146J
49 Y S Jun, X Wu, D Ghim, Q Jiang, S Cao, S Singamaneni. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019, 52(5): 1215–1225
https://doi.org/10.1021/acs.accounts.9b00012
50 A H Elsheikh, S W Sharshir, M K Ahmed Ali, J Shaibo, E M A Edreis, T Abdelhamid, C Du, Z Haiou. Thin film technology for solar steam generation: a new dawn. Solar Energy, 2019, 177: 561–575
https://doi.org/10.1016/j.solener.2018.11.058
51 P Wang. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089
https://doi.org/10.1039/C8EN00156A
52 I A Said, S Wang, Q Li. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination. Industrial & Engineering Chemistry Research, 2019, 58(40): 18829–18835
https://doi.org/10.1021/acs.iecr.9b03246
53 D Rice, S J Ghadimi, A C Barrios, S Henry, W S Walker, Q Li, F Perreault. Scaling resistance in nanophotonics-enabled solar membrane distillation. Environmental Science & Technology, 2020, 54(4): 2548–2555
https://doi.org/10.1021/acs.est.9b07622
54 K Zuo, W Wang, A Deshmukh, S Jia, H Guo, R Xin, M Elimelech, P M Ajayan, J Lou, Q Li. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15(12): 1025–1032
https://doi.org/10.1038/s41565-020-00777-0
55 C N B Elizalde, S Al-Gharabli, J Kujawa, M Mavukkandy, S W Hasan, H A Arafat. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190: 68–76
https://doi.org/10.1016/j.seppur.2017.08.053
56 Y Zhang, K Li, L Liu, K Wang, J Xiang, D Hou, J Wang. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere, 2020, 256: 127053
https://doi.org/10.1016/j.chemosphere.2020.127053
57 A Giwa, S W Hasan. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology, 2020, 241: 116735
https://doi.org/10.1016/j.seppur.2020.116735
58 Q Zhang, W Xu, X Wang. Carbon nanocomposites with high photothermal conversion efficiency. Science China Materials, 2018, 61(7): 905–914
https://doi.org/10.1007/s40843-018-9250-x
59 C Zhang, H Liang, Z Xu, Z Wang. Harnessing solar-driven photothermal effect toward the water-energy nexus. Advanced Science, 2019, 6(18): 1900883
https://doi.org/10.1002/advs.201900883
60 F Yang, J Huang, L Deng, Y Zhang, G Dang, L Shao. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 614–633
https://doi.org/10.1007/s11705-021-2115-1
61 I Adamovich, S Agarwal, E Ahedo, L L Alves, S Baalrud, N Babaeva, A Bogaerts, A Bourdon, P J Bruggeman, C Canal. et al.. The 2022 plasma roadmap: low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2022, 55(37): 373001
https://doi.org/10.1088/1361-6463/ac5e1c
62 R Zhou, R Zhou, K Prasad, Z Fang, R Speight, K Bazaka, K Ostrikov. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20(23): 5276–5284
https://doi.org/10.1039/C8GC02800A
63 U Kogelschatz. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 2004, 46(12B): B63–B75
https://doi.org/10.1088/0741-3335/46/12B/006
64 Mesbah A, Bonzanini A D, Graves D B. Learning-based control: applications in treatment of complex substrates using non-equilibrium plasmas
65 M Bryjak, I Gancarz, K Smolinska. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161(1-2): 2–9
https://doi.org/10.1016/j.cis.2010.09.004
66 J Wang, X Chen, R Reis, Z Chen, N Milne, B Winther-Jensen, L Kong, L Dumée. Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes (Basel), 2018, 8(3): 56
https://doi.org/10.3390/membranes8030056
67 M Bryjak, I Gancarz, G Poniak, W Tylus. Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38(4): 717–726
https://doi.org/10.1016/S0014-3057(01)00236-1
68 D Pal, S Neogi, S De. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion. Vacuum, 2016, 131: 293–304
https://doi.org/10.1016/j.vacuum.2016.07.010
69 B Jaleh, P Parvin, P Wanichapichart, A P Saffar, A Reyhani. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Applied Surface Science, 2010, 257(5): 1655–1659
https://doi.org/10.1016/j.apsusc.2010.08.117
70 B D Tompkins, J M Dennison, E R H Fisher. O2 plasma modification of track-etched polymer membranes for increased wettability and improved performance. Journal of Membrane Science, 2013, 428: 576–588
https://doi.org/10.1016/j.memsci.2012.10.037
71 H Y Yu, X C He, L Q Liu, J S Gu, X W Wei. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5(1): 84–91
https://doi.org/10.1002/ppap.200700051
72 D S Wavhal, E R Fisher. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005, 172(2): 189–205
https://doi.org/10.1016/j.desal.2004.06.201
73 D S Wavhal, E R Fisher. Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment. Journal of Polymer Science. Part B, Polymer Physics, 2002, 40(21): 2473–2488
https://doi.org/10.1002/polb.10308
74 M L Steen, L Hymas, E D Havey, N E Capps, D G Castner, E R Fisher. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114
https://doi.org/10.1016/S0376-7388(01)00375-1
75 M L Steen, A C Jordan, E R Fisher. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. Journal of Membrane Science, 2002, 204(1-2): 341–357
https://doi.org/10.1016/S0376-7388(02)00061-3
76 M G Yan, L Q Liu, Z Q Tang, L Huang, W Li, J Zhou, J S Gu, X W Wei, H Y Yu. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145(2): 218–224
https://doi.org/10.1016/j.cej.2008.04.007
77 H Y Yu, M X Hu, Z K Xu, J L Wang, S Y Wang. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005, 45(1): 8–15
https://doi.org/10.1016/j.seppur.2005.01.012
78 K R Kull, M L Steen, E R Fisher. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science, 2005, 246(2): 203–215
https://doi.org/10.1016/j.memsci.2004.08.019
79 Z Kiamehr, B Farokhi, S M Hosseini. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with air-Ar plasma. Korean Journal of Chemical Engineering, 2021, 38(1): 114–120
https://doi.org/10.1007/s11814-020-0665-4
80 S Mohammed, H M Hegab, R Ou, S Liu, H Ma, X Chen, T Sridhar, H Wang. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2(1): 122–131
https://doi.org/10.1016/j.gce.2020.12.001
81 C Hegde, A M Isloor, M Padaki, P Wanichapichart, Y Liangdeng. Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new NF membrane. Desalination, 2011, 265(1-3): 153–158
https://doi.org/10.1016/j.desal.2010.07.046
82 R Reis, L F Dumée, B L Tardy, R Dagastine, J D Orbell, J A Schutz, M C Duke. Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific Reports, 2016, 6(1): 29206
https://doi.org/10.1038/srep29206
83 R Reis, L F Dumée, A Merenda, J D Orbell, J A Schütz, M C Duke. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403: 3–11
https://doi.org/10.1016/j.desal.2016.06.009
84 M Safarpour, V Vatanpour, A Khataee, H Zarrabi, P Gholami, M E Yekavalangi. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination, 2017, 411: 89–100
https://doi.org/10.1016/j.desal.2017.02.012
85 K J Varin, N H Lin, Y Cohen. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013, 446: 472–481
https://doi.org/10.1016/j.memsci.2013.06.064
86 K Reid, M Dixon, C Pelekani, K Jarvis, M Willis, Y Yu. Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014, 335(1): 108–118
https://doi.org/10.1016/j.desal.2013.12.017
87 L Zou, I Vidalis, D Steele, A Michelmore, S P Low, J Q J C Verberk. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369(1-2): 420–428
https://doi.org/10.1016/j.memsci.2010.12.023
88 R Reis, M Duke, A Merenda, B Winther-Jensen, L Puskar, M J Tobin, J D Orbell, L F Dumée. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537: 1–10
https://doi.org/10.1016/j.memsci.2017.05.013
89 U Hirsch, M Ruehl, N Teuscher, A Heilmann. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018, 436: 207–216
https://doi.org/10.1016/j.apsusc.2017.12.038
90 W Khongnakorn, W Bootluck, P Jutaporn. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. Journal of Water Process Engineering, 2020, 38: 101633
https://doi.org/10.1016/j.jwpe.2020.101633
91 M Gryta. Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 2021, 515: 115187
https://doi.org/10.1016/j.desal.2021.115187
92 M I Butrón-García, J A Jofre-Reche, J M Martín-Martínez. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332: 1–11
https://doi.org/10.1016/j.apsusc.2015.01.144
93 Z Xiao, R Zheng, Y Liu, H He, X Yuan, Y Ji, D Li, H Yin, Y Zhang, X M Li, T He. Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface. Water Research, 2019, 155: 152–161
https://doi.org/10.1016/j.watres.2019.01.036
94 C L Lai, R M Liou, S H Chen, G W Huang, K R Lee. Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation. Desalination, 2011, 267(2-3): 184–192
https://doi.org/10.1016/j.desal.2010.09.024
95 Y Kong, X Lin, Y Wu, J Chen, J Xu. Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. Journal of Applied Polymer Science, 1992, 46(2): 191–199
https://doi.org/10.1002/app.1992.070460201
96 X Wei, B Zhao, X M Li, Z Wang, B Q He, T He, B Jiang. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 2012, 407–408: 164–175
https://doi.org/10.1016/j.memsci.2012.03.031
97 C Yang, X M Li, J Gilron, D Kong, Y Yin, Y Oren, C Linder, T He. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456: 155–161
https://doi.org/10.1016/j.memsci.2014.01.013
98 M Tian, Y Yin, C Yang, B Zhao, J Song, J Liu, X M Li, T He. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114
https://doi.org/10.1016/j.desal.2015.05.002
99 Y C Woo, Y Chen, L D Tijing, S Phuntsho, T He, J S Choi, S H Kim, H K Shon. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242
https://doi.org/10.1016/j.memsci.2017.01.063
100 L Liu, F Shen, X Chen, J Luo, Y Su, H Wu, Y Wan. A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dipping and grafting. Journal of Membrane Science, 2016, 499: 544–554
https://doi.org/10.1016/j.memsci.2015.11.003
101 S Linic, U Aslam, C Boerigter, M Morabito. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 2015, 14(6): 567–576
https://doi.org/10.1038/nmat4281
102 Y Lin, H Xu, X Shan, Y Di, A Zhao, Y Hu, Z Gan. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(33): 19203–19227
https://doi.org/10.1039/C9TA05935K
103 J A Schuller, E S Barnard, W Cai, Y C Jun, J S White, M L Brongersma. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
https://doi.org/10.1038/nmat2630
104 S V Boriskina, H Ghasemi, G Chen. Plasmonic materials for energy: from physics to applications. Materials Today, 2013, 16(10): 375–386
https://doi.org/10.1016/j.mattod.2013.09.003
105 B Gong, H Yang, S Wu, G Xiong, J Yan, K Cen, Z Bo, K Ostrikov. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Letters, 2019, 11(1): 1–14
https://doi.org/10.1007/s40820-019-0281-1
106 M Chen, Y He, Q Ye, X Wang, Y Hu. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182: 340–347
https://doi.org/10.1016/j.solener.2019.02.070
107 A E Rider, K Ostrikov, S A Furman. Plasmas meet plasmonics: everything old is new again. European Physical Journal D, 2012, 66(9): 1–19
https://doi.org/10.1140/epjd/e2012-30273-3
108 B Yang, C Li, Z Wang, Q Dai. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Advanced Materials, 2022, 2107351(26): 1–31
https://doi.org/10.1002/adma.202107351
109 H Zoubos, L E Koutsokeras, D F Anagnostopoulos, E Lidorikis, S A Kalogirou, A R Wildes, P C Kelires, P Patsalas. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Solar Energy Materials and Solar Cells, 2013, 117: 350–356
https://doi.org/10.1016/j.solmat.2013.06.019
110 M Du, G H Tang. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137: 393–400
https://doi.org/10.1016/j.solener.2016.08.029
111 L Zhou, Y Tan, J Wang, W Xu, Y Yuan, W Cai, S Zhu, J Zhu. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398
https://doi.org/10.1038/nphoton.2016.75
112 G NaikJ KimN Kinseyeds. Boltasseva A. Chapter 6—Alternative Plasmonic Materials. North-Holland: Handbook of Surface Science, 2014, 189–221
113 G V Naik, V M Shalaev, A Boltasseva. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294
https://doi.org/10.1002/adma.201205076
114 H Liu, C Chen, H Wen, R Guo, N A Williams, B Wang, F Chen, L Hu. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18839–18846
https://doi.org/10.1039/C8TA05924A
115 J Wang, Y Li, L Deng, N Wei, Y Weng, S Dong, D Qi, J Qiu, X Chen, T Wu. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730
https://doi.org/10.1002/adma.201603730
116 N S Fuzil, N H Othman, N H Alias, F Marpani, H D Othman Mohd, A F Ismail, W J Lau, K Li, T D Kusworo, I Ichinose. et al.. A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production. Desalination, 2021, 517: 115259
https://doi.org/10.1016/j.desal.2021.115259
117 F Tao, Y Zhang, K Yin, S Cao, X Chang, Y Lei, D Wang, R Fan, L Dong, Y Yin. et al.. A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy & Fuels, 2018, 2(12): 2762–2769
https://doi.org/10.1039/C8SE00402A
118 J Xu, F Xu, M Qian, Z Li, P Sun, Z Hong, F Huang. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy, 2018, 53: 425–431
https://doi.org/10.1016/j.nanoen.2018.08.067
119 F Tao, Y Zhang, F Zhang, K Wang, X Chang, Y An, L Dong, Y Yin. From CdS to Cu7S4 nanorods via a cation exchange route and their applications: environmental pollution removal, photothermal conversion and light-induced water evaporation. ChemistrySelect, 2017, 2(10): 3039–3048
https://doi.org/10.1002/slct.201700133
120 X Li, D Wang, Y Zhang, L Liu, W Wang. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025–3032
https://doi.org/10.1007/s12274-020-2967-6
121 S IshiiK ChenR P SugavaneshwarH OkuyamaT D DaoS L ShindeM KaurM KitajimaT Nagao. Efficient absorption of sunlight using resonant nanoparticles for solar heat applications. Materials Nanoarchitectonics, 2018, 241–253
122 Q Lu, Y Yang, J Feng, X Wang. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL, 2019, 3(2): 1–8
https://doi.org/10.1002/solr.201800277
123 B AnsoriY Gogotsi. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Berlin: Springer, 2019, 13–15
124 J C Lei, X Zhang, Z Zhou. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015, 10(3): 276–286
https://doi.org/10.1007/s11467-015-0493-x
125 Q Zhang, G Yi, Z Fu, H Yu, S Chen, X Quan. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196–13207
https://doi.org/10.1021/acsnano.9b06180
126 C Chang, C Yang, Y Liu, P Tao, C Song, W Shang, J Wu, T Deng. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 2016, 8(35): 23412–23418
https://doi.org/10.1021/acsami.6b08077
127 X Wang, Y He, X Liu, L Shi, J Zhu. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157: 35–46
https://doi.org/10.1016/j.solener.2017.08.015
128 L Zhu, M Gao, C K N Peh, G W Ho. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 2019, 57: 507–518
https://doi.org/10.1016/j.nanoen.2018.12.046
129 A Lalisse, G Tessier, J Plain, G Baffou. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. Journal of Physical Chemistry C, 2015, 119(45): 25518–25528
https://doi.org/10.1021/acs.jpcc.5b09294
130 K Y Leong, H C Ong, N H Amer, M J Norazrina, M S Risby, K Z Ku Ahmad. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable & Sustainable Energy Reviews, 2016, 53: 1092–1105
https://doi.org/10.1016/j.rser.2015.09.060
131 H Zhang, H J Chen, X Du, D Wen. Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100: 141–147
https://doi.org/10.1016/j.solener.2013.12.004
132 M Amjad, G Raza, Y Xin, S Pervaiz, J Xu, X Du, D Wen. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206: 393–400
https://doi.org/10.1016/j.apenergy.2017.08.144
133 M Chen, Y He, J Zhu, Y Shuai, B Jiang, Y Huang. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115: 85–94
https://doi.org/10.1016/j.solener.2015.01.031
134 Y Zhang, L Liu, K Li, D Hou, J Wang. Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere, 2018, 212: 554–562
https://doi.org/10.1016/j.chemosphere.2018.08.114
135 J Zeng, Y Xuan. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 2018, 212: 809–819
https://doi.org/10.1016/j.apenergy.2017.12.083
136 G Zhu, L Wang, N Bing, H Xie, W Yu. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy, 2019, 183: 747–755
https://doi.org/10.1016/j.energy.2019.06.170
137 M Mehrali, M K Ghatkesar, R Pecnik. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224: 103–115
https://doi.org/10.1016/j.apenergy.2018.04.065
138 Y Xuan, H Duan, Q Li. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213
https://doi.org/10.1039/C4RA00630E
139 L Wang, G Zhu, M Wang, W Yu, J Zeng, X Yu, H Xie, Q Li. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Solar Energy, 2019, 184: 240–248
https://doi.org/10.1016/j.solener.2019.04.013
140 B J Lee, K Park, T Walsh, L Xu. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009
https://doi.org/10.1115/1.4005756
141 N Chen, H Ma, Y Li, J Cheng, C Zhang, D Wu, H Zhu. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Solar Energy Materials and Solar Cells, 2017, 162: 83–92
https://doi.org/10.1016/j.solmat.2016.12.049
142 A Menbari, A A Alemrajabi, Y Ghayeb. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management, 2016, 108: 501–510
https://doi.org/10.1016/j.enconman.2015.11.034
143 W Evans, R Prasher, J Fish, P Meakin, P Phelan, P Keblinski. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1431–1438
https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
144 J Jeon, S Park, B J Lee. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256
https://doi.org/10.1016/j.solener.2016.03.022
145 F Tao, M Green, A V Garcia, T Xiao, A T Van Tran, Y Zhang, Y Yin, X Chen. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84
https://doi.org/10.1016/j.apmt.2019.07.011
146 N J Hogan, A S Urban, C Ayala-Orozco, A Pimpinelli, P Nordlander, N J Halas. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645
https://doi.org/10.1021/nl5016975
147 S L Wu, H Chen, H L Wang, X Chen, H C Yang, S B Darling. Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science. Water Research & Technology, 2021, 7(1): 24–39
https://doi.org/10.1039/D0EW00725K
148 A Politano, G Di Profio, E Fontananova, V Sanna, A Cupolillo, E Curcio. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 2019, 451: 192–199
https://doi.org/10.1016/j.desal.2018.03.006
149 R Li, L Zhang, L Shi, P Wang. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759
https://doi.org/10.1021/acsnano.6b08415
150 S Hong, D Sycks, H F Chan, S Lin, G P Lopez, F Guilak, K W Leong, X Zhao. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 2015, 27(27): 4035–4040
https://doi.org/10.1002/adma.201501099
151 S Bose, S Vahabzadeh, A Bandyopadhyay. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504
https://doi.org/10.1016/j.mattod.2013.11.017
152 J T Muth, D M Vogt, R L Truby, Y Mengüç, D B Kolesky, R J Wood, J A Lewis. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307–6312
https://doi.org/10.1002/adma.201400334
153 H D Kiriarachchi, F S Awad, A A Hassan, J A Bobb, A Lin, M S El-Shall. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539
https://doi.org/10.1039/C8NR05916K
154 D Ghim, X Wu, M Suazo, Y S Jun. Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation. Nano Energy, 2021, 80: 105444
https://doi.org/10.1016/j.nanoen.2020.105444
155 K Bae, G Kang, S K Cho, W Park, K Kim, W J Padilla. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103
https://doi.org/10.1038/ncomms10103
156 M Chen, Y Wu, W Song, Y Mo, X Lin, Q He, B Guo. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10(13): 6186–6193
https://doi.org/10.1039/C8NR01017J
157 Z Liu, Z Yang, X Huang, C Xuan, J Xie, H Fu, Q Wu, J Zhang, X Zhou, Y Liu. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination: via enhanced localized heating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 20044–20052
https://doi.org/10.1039/C7TA06384A
158 C Liu, J Huang, C E Hsiung, Y Tian, J Wang, Y Han, A Fratalocchi. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017, 1(1-2): 1600013
https://doi.org/10.1002/adsu.201600013
159 Y Yang, X Yang, L Fu, M Zou, A Cao, Y Du, Q Yuan, C H Yan. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171
https://doi.org/10.1021/acsenergylett.8b00433
160 J Chen, J Feng, Z Li, P Xu, X Wang, W Yin, M Wang, X Ge, Y Yin. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Letters, 2019, 19(1): 400–407
https://doi.org/10.1021/acs.nanolett.8b04157
161 A H Avci, S Santoro, A Politano, M Propato, M Micieli, M Aquino, Z Wenjuan, E Curcio. Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion. Chemical Engineering and Processing, 2021, 164: 108382
https://doi.org/10.1016/j.cep.2021.108382
162 H Ye, X Li, L Deng, P Li, T Zhang, X Wang, B S Hsiao. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Industrial & Engineering Chemistry Research, 2019, 58(8): 3269–3281
https://doi.org/10.1021/acs.iecr.8b04708
163 D Wu, C Zhao, Y Xu, X Zhang, L Yang, Y Zhang, Z Gao, Y Y Song. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Applied Nano Materials, 2020, 3(11): 10895–10904
https://doi.org/10.1021/acsanm.0c02123
164 Y Lin, Z Chen, L Fang, M Meng, Z Liu, Y Di, W Cai, S Huang, Z Gan. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2018, 30(1): 015402
https://doi.org/10.1088/1361-6528/aae678
165 L Zhang, J Xing, X Wen, J Chai, S Wang, Q Xiong. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849
https://doi.org/10.1039/C7NR05149B
166 M Shang, N Li, S Zhang, T Zhao, C Zhang, C Liu, H Li, Z Wang. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 2018, 1(1): 56–61
https://doi.org/10.1021/acsaem.7b00135
167 Z Xu, N Rao, C Y Tang, W C Law. Seawater desalination by interfacial solar vapor generation method using plasmonic heating nanocomposites. Micromachines, 2020, 11(9): 867
https://doi.org/10.3390/mi11090867
168 Z Guo, X Ming, G Wang, B Hou, X Liu, T Mei, J Li, J Wang, X Wang. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33(2): 25008
https://doi.org/10.1088/1361-6641/aaa323
169 Y Shi, R Li, L Shi, E Ahmed, Y Jin, P Wang. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation. Advanced Sustainable Systems, 2018, 2: 1–11
170 M Kaur, S Ishii, S L Shinde, T Nagao. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523–8528
https://doi.org/10.1021/acssuschemeng.7b02089
171 Y Bian, K Tang, Z Xu, J Ma, Y Shen, L Hao, X Chen, K Nie, J Li, T Ma. et al.. Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33(22): 3857–3869
https://doi.org/10.1557/jmr.2018.326
172 E Traver, R A Karaballi, Y E Monfared, H Daurie, G A Gagnon, M Dasog. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Applied Nano Materials, 2020, 3(3): 2787–2794
https://doi.org/10.1021/acsanm.0c00107
173 M KaurS IshiiS L ShindeT Nagao. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Optics InfoBase Conference Papers, 2018, Part F125-: 1–8
174 M U Farid, J A Kharraz, P Wang, A K An. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. Journal of Cleaner Production, 2020, 271: 122684
https://doi.org/10.1016/j.jclepro.2020.122684
175 M U Farid, J A Kharraz, A K An. Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3805–3815
https://doi.org/10.1021/acsami.0c17154
176 T F Chala, C M Wu, M H Chou, Z L Guo. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces, 2018, 10(34): 28955–28962
https://doi.org/10.1021/acsami.8b07434
177 X Cheng, X Bai, J Yang, X M Zhu, J Wang. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination. ACS Applied Materials & Interfaces, 2022, 14(25): 28769–28780
https://doi.org/10.1021/acsami.2c03845
178 G Li, W C Law, K C Chan. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20(16): 3689–3695
https://doi.org/10.1039/C8GC01347K
179 J Zhao, Y Yang, C Yang, Y Tian, Y Han, J Liu, X Yin, W Que. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16196–16204
https://doi.org/10.1039/C8TA05569F
180 X J Zha, X Zhao, J H Pu, L S Tang, K Ke, R Y Bao, L Bai, Z Y Liu, M B Yang, W Yang. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Applied Materials & Interfaces, 2019, 11(40): 36589–36597
https://doi.org/10.1021/acsami.9b10606
181 L Wang, J Shang, G Yang, Y Ma, L Kou, D Liu, H Yin, D Hegh, J Razal, W Lei. 2D higher-metal nitride nanosheets for solar steam generation. Small, 2022, 2201770(28): 2–9
https://doi.org/10.1002/smll.202201770
182 S Behera, C Kim, K Kim. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure-graphene oxide-gold nanoparticle composite. Langmuir, 2020, 36(42): 12494–12503
https://doi.org/10.1021/acs.langmuir.0c01906
183 Y Liu, J Lou, M Ni, C Song, J Wu, N P Dasgupta, P Tao, W Shang, T Deng. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779
https://doi.org/10.1021/acsami.5b09996
184 J Huang, Y He, L Wang, Y Huang, B Jiang. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132: 452–459
https://doi.org/10.1016/j.enconman.2016.11.053
185 K Goharshadi, S A Sajjadi, E K Goharshadi, R Mehrkhah. Highly efficient plasmonic wood/Ag/Pd photoabsorber in interfacial solar steam generation. Materials Research Bulletin, 2022, 154: 111916
https://doi.org/10.1016/j.materresbull.2022.111916
186 L Zhu, J Li, L Zhong, L Zhang, M Zhou, H Chen, Y Hou, Y Zheng. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100: 107441
https://doi.org/10.1016/j.nanoen.2022.107441
187 M Gao, P K N Connor, G W Ho. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
https://doi.org/10.1039/C6EE00971A
188 F S Awad, H D Kiriarachchi, K M Abouzeid, Ü Özgür, M S El-Shall. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials, 2018, 1(3): 976–985
https://doi.org/10.1021/acsaem.8b00109
189 L Yi, S Ci, S Luo, P Shao, Y Hou, Z Wen. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41: 600–608
https://doi.org/10.1016/j.nanoen.2017.09.042
190 Y Yang, Y Han, J Zhao, W Que. 2D/1D MXene/MWCNT hybrid membrane-based evaporator for solar desalination. Materials (Basel), 2022, 15(3): 1–7
https://doi.org/10.3390/ma15030929
191 J Chen, J Pei, H Zhao. Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation. Journal of Physical Chemistry C, 2021, 125(35): 19345–19352
https://doi.org/10.1021/acs.jpcc.1c02610
192 D C Montgomery. Design and Analysis of Experiments. 9th ed. United States: John Wiley & Sons, 2017
193 W J Lau, S Gray, T Matsuura, D Emadzadeh, J P Chen, A F Ismail. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324
https://doi.org/10.1016/j.watres.2015.04.037
194 P Marchetti, M F Jimenez Solomon, G Szekely, A G Livingston. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806
https://doi.org/10.1021/cr500006j
195 S Zha, P Gusnawan, J Lin, G Zhang, N Liu, J Yu. Integrating a novel TS-af-HFM NF process for portable treatment of oilfield produced water. Chemical Engineering Journal, 2017, 311: 203–208
https://doi.org/10.1016/j.cej.2016.11.090
196 A Harpale, H B Chew. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling. Carbon, 2017, 117: 82–91
https://doi.org/10.1016/j.carbon.2017.02.062
197 L Liu, D Xie, M Wu, X Yang, Z Xu, W Wang, X Bai, E Wang. Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50(8): 3039–3044
https://doi.org/10.1016/j.carbon.2012.02.090
198 L Huang, J Pei, H Jiang, X Hu. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination, 2018, 442: 1–7
https://doi.org/10.1016/j.desal.2018.05.006
199 A Politano, P Argurio, G Di Profio, V Sanna, A Cupolillo, S Chakraborty, H A Arafat, E Curcio. Photothermal membrane distillation for seawater desalination. Advanced Materials, 2017, 29(2): 1603504
https://doi.org/10.1002/adma.201603504
200 Y Z Tan, H Wang, L Han, M B Tanis-Kanbur, M V Pranav, J W Chew. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018, 565: 254–265
https://doi.org/10.1016/j.memsci.2018.08.032
201 B Hou, Z Cui, X Zhu, X Liu, G Wang, J Wang, T Mei, J Li, X Wang. Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222: 159–164
https://doi.org/10.1016/j.matchemphys.2018.10.006
202 G Zuo, R Wang. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447: 26–35
https://doi.org/10.1016/j.memsci.2013.06.053
203 R Reis, L F Dumée, L He, F She, J D Orbell, B Winther-Jensen, M C Duke. Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion. ACS Applied Materials & Interfaces, 2015, 7(27): 14644–14653
https://doi.org/10.1021/acsami.5b01603
204 M S Abdel-Wahed, M M Hefny, S Abd-Elmaksoud, M A El-Liethy, M A Kamel, A S El-Kalliny, I A Hamza. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles. Scientific Reports, 2022, 12(1): 1–14
https://doi.org/10.1038/s41598-022-13444-2
205 S Wu, G Xiong, H Yang, B Gong, Y Tian, C Xu, Y Wang, T Fisher, J Yan, K Cen. et al.. Multifunctional solar waterways: plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Advanced Energy Materials, 2019, 9(30): 1–11
https://doi.org/10.1002/aenm.201901286
206 Y S Khoo, W J Lau, Y Y Liang, M Karaman, M Gürsoy, G S Lai, A F Ismail. Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9(3): 105227
https://doi.org/10.1016/j.jece.2021.105227
207 F Liu, L Wang, D Li, Q Liu, B Deng. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9(61): 35417–35428
https://doi.org/10.1039/C9RA07114H
[1] Shan Jiang, Jianfeng Xi, Hongqi Dai, Huining Xiao, Weibing Wu. Easily-manufactured paper-based materials with high porosity for adsorption/separation applications in complex wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 830-839.
[2] Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
[3] Rongzhen Chen, Xinfei Dong, Qingchun Ge. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing[J]. Front. Chem. Sci. Eng., 2022, 16(5): 755-763.
[4] Fan Yang, Junhui Huang, Lijun Deng, Yanqiu Zhang, Guodong Dang, Lu Shao. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 614-633.
[5] Linwei Zhu, Chun Ding, Tengyang Zhu, Yan Wang. A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Front. Chem. Sci. Eng., 2022, 16(5): 661-680.
[6] Rusen Zhou, Xiaoxiang Wang, Renwu Zhou, Janith Weerasinghe, Tianqi Zhang, Yanbin Xin, Hao Wang, Patrick Cullen, Hongxia Wang, Kostya (Ken) Ostrikov. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications[J]. Front. Chem. Sci. Eng., 2022, 16(4): 475-483.
[7] Laura Donato, Enrico Drioli. Imprinted membranes for sustainable separation processes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 775-792.
[8] Hong Li, Fang Yi, Xingang Li, Xin Gao. Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(3): 602-614.
[9] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[10] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[11] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[12] Ali Akbari, Nasser Arsalani, Bagher Eftekhari-Sis, Mojtaba Amini, Gholamreza Gohari, Esmaiel Jabbari. Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue[J]. Front. Chem. Sci. Eng., 2019, 13(3): 563-573.
[13] Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood. An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Front. Chem. Sci. Eng., 2019, 13(2): 274-295.
[14] Gautam SEN, G. Usha RANI, Sumit MISHRA. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment[J]. Front Chem Sci Eng, 2013, 7(3): 312-321.
[15] Jing DONG, Huilong WANG. A study on rapid acid chrome black (MB 7) spectrophotometric determination of ClO2 and catalytic degradation of 2,6-dinitro-p-cresol (DNPC) by ClO2[J]. Front Chem Sci Eng, 2011, 5(2): 245-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed