Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (3) : 31    https://doi.org/10.1007/s11705-024-2394-4
Enhanced photocatalytic performance by regulating the Ce3+/Ce4+ ratio in cerium dioxide
Zhi Li, Dongsheng Jia, Wei Zhang, Ying Li, Mitang Wang, Dongliang Zhang()
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(9370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cerium dioxide (CeO2) photocatalysts are used in treating environmental pollution and addressing the energy crisis due to their excellent oxygen storage capacities and abundant oxygen vacancies. In this paper, CeO2 precursors were synthesized with different water-alcohol ratios via a solvothermal method, and CeO2 photocatalysts with different Ce3+/Ce4+ ratios were obtained by changing the precursor calcination atmospheres (air, Ar) as well as the calcination time. The effects of CeO2 with different Ce3+/Ce4+ ratios in photocatalytic degradations of methylene blue under visible light were investigated. X-ray photoelectron spectroscopy results showed that the surfaces of the samples calcined under Ar had higher Ce3+/Ce4+ ratios and oxygen vacancy concentrations, which reduced the band gaps of the catalysts and improved their utilization of visible light. In addition, the many Ce3+/Ce4+ redox centers and oxygen vacancies on the sample surfaces improved the separation and transfer efficiencies of the photogenerated carriers. The sample C2-Ar calcined under Ar showed a high adsorption capacity and excellent photocatalytic activity by removing 96% of the methylene blue within 120 min, which was more than twice the degradation rate of the sample (C2-air) prepared via calcination under air. Trapping experiments showed that photogenerated holes played a key role in the photocatalytic process. In addition, a synergistic photocatalytic mechanism for the Ce3+/Ce4+ redox centers and oxygen vacancies was elucidated in detail, and the sensitization of cerium dioxide by dyes aided the degradation of methylene blue.

Keywords CeO2      oxygen vacancies      Ce3+/Ce4+ ratios      photocatalytic dye-sensitization     
Corresponding Author(s): Dongliang Zhang   
Just Accepted Date: 21 December 2023   Issue Date: 06 February 2024
 Cite this article:   
Zhi Li,Dongsheng Jia,Wei Zhang, et al. Enhanced photocatalytic performance by regulating the Ce3+/Ce4+ ratio in cerium dioxide[J]. Front. Chem. Sci. Eng., 2024, 18(3): 31.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2394-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I3/31
Fig.1  XRD patterns of different CeO2 samples.
Type2θ/(o )d(111)/?a/?D/nma)
C3-Ar29.0583.0715.3188.147
C2-Ar29.0503.0715.3208.650
C1-Ar28.8773.0895.3519.305
C3-air28.8923.0885.3487.477
C2-air-328.8613.0915.3548.179
C2-air28.8443.0935.3577.404
C1-air28.8823.0895.3509.609
Tab.1  Calculation of structural parameters for different CeO2 samples
Fig.2  SEM images of (a) C1-air, (b) C2-air, (c) C2-air-3, (d) C3-air, (e) C1-Ar, (f) C2-Ar and (g) C3-Ar.
Fig.3  C2-air and C2-Ar of (a) N2 adsorption-desorption isotherms and (b) Barrett-Joyner-Halenda (BJH) pore size distribution curves.
Fig.4  XPS spectra of (a) Ce 3d precursors C-10:30, C-10:60 and C-10:90, XPS spectra of CeO2 under air atmosphere calcination of (b) Ce 3d and (c) O 1s, XPS spectra of CeO2 under Ar atmosphere calcination of (d) Ce 3d and (e) O 1s, and (f) Ce3+ and oxygen vacancies of different CeO2 samples content.
Fig.5  Different CeO2 samples of (a) Raman spectra and (b) PL spectra.
Fig.6  Different CeO2 samples of (a) UV-Vis DRS and (b) Tauc plots.
Fig.7  (a) TPC response and (b) electrochemical impedance of different Ce dioxide.
Fig.8  (a) Effect of different CeO2 samples on MB degradation rate, (b) the pseudo-first-order reaction kinetics for MB degradation, (c) cycling test for MB degradation on C2-Ar samples and (d) effect of different scavengers on the degradation MB of C2-Ar samples.
MaterialLight sourceDegradation rate/%Light duration/ minReference
CeO2 NPsUV light85120[43]
mCe0.85Zr0.15O2Visible light94120[44]
CeO2/SCBUV light90120[45]
CeO2-0.02UV light98150[46]
Co-doped CeO2Visible light50120[47]
C2-ArVisible light96120This work
Tab.2  Comparison of photocatalysts with previously reported materials for MB degradation rate (%)
Fig.9  Degradation of MB by (a) C2-air and (b) C2-Ar at different wavelengths of light.
Fig.10  Schematic diagram of the possible photocatalytic mechanism of cerium dioxide with oxygen-rich vacancies.
1 M Shanmugam , A Alsalme , A Alghamdi , R Jayavel . Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Applied Materials & Interfaces, 2015, 7(27): 14905–14911
https://doi.org/10.1021/acsami.5b02715
2 S Li , Y Guo , Q Zhang , L Zhang , P Zhou , M Aleksandrzak , X Chen . Enhanced photocatalytic performance of heterostructure CNNS@Bi2WO6 photocatalysts towards degradation of organic pollution. International Journal of Hydrogen Energy, 2023, 48(67): 26173–26186
https://doi.org/10.1016/j.ijhydene.2023.03.317
3 C Zhu , Q Xian , Q He , C Chen , W Zou , C Sun , S Wang , X Duan . Edge-rich bicrystalline 1T/2H-MoS2 cocatalyst-decorated {110} terminated CeO2 nanorods for photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2021, 13(30): 35818–35827
https://doi.org/10.1021/acsami.1c09651
4 M Riffat , H Ali , H A Qayyum , M Bilal , T Hussain . Enhanced solar-driven water splitting by ZnO/CdTe heterostructure thin films-based photocatalysts. International Journal of Hydrogen Energy, 2023, 48(58): 22069–22078
https://doi.org/10.1016/j.ijhydene.2023.03.068
5 C V Reddy , A Nagar , N P Shetti , I N Reddy , S Basu , J Shim , R R Kakarla . Novel g-C3N4/BiVO4 heterostructured nanohybrids for high efficiency photocatalytic degradation of toxic chemical pollutants. Chemosphere, 2023, 322: 138146
https://doi.org/10.1016/j.chemosphere.2023.138146
6 J Geng , S Guo , Z Zou , Z Yuan , D Zhang , X Yan , X Ning , X Fan . 0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2. Fuel, 2023, 333: 126417
https://doi.org/10.1016/j.fuel.2022.126417
7 L Huang , D Bao , X Jiang , J Li , L Zhang , X Sun . Fabrication of stable high-performance urchin-like CeO2/ZnO@Au hierarchical heterojunction photocatalyst for water remediation. Journal of Colloid and Interface Science, 2021, 588: 713–724
https://doi.org/10.1016/j.jcis.2020.11.099
8 M Humayun , Z Hu , A Khan , W Cheng , Y Yuan , Z Zheng , Q Fu , W Luo . Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. Journal of Hazardous Materials, 2019, 364: 635–644
https://doi.org/10.1016/j.jhazmat.2018.10.088
9 X Zheng , S S Mofarah , A Cen , C Cazorla , E Haque , E Y Chen , A J Atanacio , M Manohar , C Vutukuri , J L Abraham . et al.. Role of oxygen vacancy ordering and channel formation in tuning intercalation pseudocapacitance in Mo single-ion-implanted CeO2−x nanoflakes. ACS Applied Materials & Interfaces, 2021, 13(50): 59820–59833
https://doi.org/10.1021/acsami.1c14484
10 H Qi , C Shi , X Jiang , M Teng , Z Sun , Z Huang , D Pan , S Liu , Z Guo . Constructing CeO2/nitrogen-doped carbon quantum dot/g-C3N4 heterojunction photocatalysts for highly efficient visible light photocatalysis. Nanoscale, 2020, 12(37): 19112–19120
https://doi.org/10.1039/D0NR02965C
11 Y Li , K Chen , X Wang , Z Xiao , G Liao , J Wang , X Li , Y Tang , C He , L Li . Efficient removal of TBBPA with a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst under sunlight irradiation. Chemosphere, 2022, 308: 136259
https://doi.org/10.1016/j.chemosphere.2022.136259
12 B Wang , X Feng , Y Xu , J W Shi . Role of Ce in promoting low-temperature performance and hydrothermal stability of Ce/Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Separation and Purification Technology, 2023, 315: 123679
https://doi.org/10.1016/j.seppur.2023.123679
13 R Peng , H Zhang , Y Guo , W Huang , Y Zhang , J Wu , M Fu , C Yu , D Ye . The lanthanide doping effect on toluene catalytic oxidation over Pt/CeO2 catalyst. Journal of Colloid and Interface Science, 2022, 614: 33–46
https://doi.org/10.1016/j.jcis.2022.01.071
14 K Salimi . Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599: 124908
https://doi.org/10.1016/j.colsurfa.2020.124908
15 C H Shen , Y Chen , X J Xu , X Y Li , X J Wen , Z T Liu , R Xing , H Guo , Z H Fei . Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts. Journal of Hazardous Materials, 2021, 416: 126217
https://doi.org/10.1016/j.jhazmat.2021.126217
16 Y Xiao , S Tan , D Wang , J Wu , T Jia , Q Liu , Y Qi , X Qi , P He , M Zhou . CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Applied Surface Science, 2020, 530: 147116
https://doi.org/10.1016/j.apsusc.2020.147116
17 S Yuan , B Xu , Q Zhang , S Liu , J Xie , M Zhang , T Ohno . Development of the visible-light response of CeO2−x with a high Ce3+ content and its photocatalytic properties. ChemCatChem, 2018, 10(6): 1267–1271
https://doi.org/10.1002/cctc.201701767
18 B Talluri , K Yoo , J Kim . Novel rhombus-shaped cerium oxide sheets as a highly durable methanol oxidation electrocatalyst and high-performance supercapacitor electrode material. Ceramics International, 2022, 48(1): 164–172
https://doi.org/10.1016/j.ceramint.2021.09.092
19 B Choudhury , P Chetri , A Choudhury . Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Advances, 2014, 4(9): 4663–4671
https://doi.org/10.1039/C3RA44603D
20 S N Matussin , M H Harunsani , M M Khan . CeO2 and CeO2-based nanomaterials for photocatalytic, antioxidant and antimicrobial activities. Journal of Rare Earths, 2023, 41(2): 167–181
https://doi.org/10.1016/j.jre.2022.09.003
21 J Mei , Y Shen , Q Wang , Y Shen , W Li , J Zhao , J Chen , S Zhang . Roles of oxygen species in low-temperature catalytic o-xylene oxidation on MOF-derived bouquetlike CeO2. ACS Applied Materials & Interfaces, 2022, 14(31): 35694–35703
https://doi.org/10.1021/acsami.2c08418
22 B Zhang , S Zhang , B Liu . Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Applied Surface Science, 2020, 529: 147068
https://doi.org/10.1016/j.apsusc.2020.147068
23 C Yang , J Yang , X Duan , G Hu , Q Liu , S Ren , J Li , M Kong . Roles of photo-generated holes and oxygen vacancies in enhancing photocatalytic performance over CeO2 prepared by molten salt method. Advanced Powder Technology, 2020, 31(9): 4072–4081
https://doi.org/10.1016/j.apt.2020.08.017
24 T L Thompson , J T Jr Yates . TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Topics in Catalysis, 2005, 35(3–4): 197–210
https://doi.org/10.1007/s11244-005-3825-1
25 X Xu , X Ding , X Yang , P Wang , S Li , Z Lu , H Chen . Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: oxygen vacancy engineering, biotoxicity evaluation and mechanism study. Journal of Hazardous Materials, 2019, 364: 691–699
https://doi.org/10.1016/j.jhazmat.2018.10.063
26 Y Liu , Y Li , X Liu , J Li , Y Feng , X Li . In situ construction of rich oxygen vacancy Bi/Bi3TaO7 heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48(79): 30664–30676
https://doi.org/10.1016/j.ijhydene.2023.04.259
27 K Wang , Y Chang , L Lv , Y Long . Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science, 2015, 351: 164–168
https://doi.org/10.1016/j.apsusc.2015.05.122
28 N Xu , J Ma , Q Liu , Y Luo , Y Pu . Preparation of CeO2 abrasives by reducing atmosphere-assisted molten salt method for enhancing their chemical mechanical polishing performance on SiO2 substrates. Journal of Rare Earths, 2023, 41(10): 1627–1635
https://doi.org/10.1016/j.jre.2022.10.011
29 A M H Lim , H C Zeng . Antisolvent route to ultrathin hollow spheres of cerium oxide for enhanced CO oxidation. ACS Applied Materials & Interfaces, 2021, 13(17): 20501–20510
https://doi.org/10.1021/acsami.1c01320
30 D Ma , D Sun , Y Zou , S Mao , Y Lv , Y Wang , J Li , J W Shi . The synergy between electronic anchoring effect and internal electric field in CdS quantum dots decorated dandelion-like Fe–CeO2 nanoflowers for improved photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 549: 179–188
https://doi.org/10.1016/j.jcis.2019.04.075
31 T Ye , W Huang , L Zeng , M Li , J Shi . CeO2−x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 210: 141–148
https://doi.org/10.1016/j.apcatb.2017.03.051
32 X Wang , R Duan , W Liu , D Wang , B Wang , Y Xu , C Niu , J W Shi . The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx. Applied Surface Science, 2020, 510: 145517
https://doi.org/10.1016/j.apsusc.2020.145517
33 D Yang , Y Xu , K Pan , C Yu , J Wu , M Li , F Yang , Y Qu , W Zhou . Engineering surface oxygen vacancy of mesoporous CeO2 nanosheets assembled microspheres for boosting solar-driven photocatalytic performance. Chinese Chemical Letters, 2022, 33(1): 378–384
https://doi.org/10.1016/j.cclet.2021.06.035
34 A Murali , Y P Lan , H Y Sohn . Effect of oxygen vacancies in non-stoichiometric ceria on its photocatalytic properties. Nano-Structures & Nano-Objects, 2019, 18: 100257
https://doi.org/10.1016/j.nanoso.2019.100257
35 M Lu , M Liu , Y Wei , H Xie , W Fan , J Huang , J Hu , P Wei , W Zhang , Y Xie . et al.. Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation. Journal of Alloys and Compounds, 2023, 936: 168273
https://doi.org/10.1016/j.jallcom.2022.168273
36 Y Lan , X Xia , J Li , X Mao , C Chen , D Ning , Z Chu , J Zhang , F Liu . Insight into the contributions of surface oxygen vacancies on the promoted photocatalytic property of nanoceria. Nanomaterials, 2021, 11(5): 1168
https://doi.org/10.3390/nano11051168
37 N K Renuka , A K Praveen , C U Aniz . Ceria rhombic microplates: synthesis, characterization and catalytic activity. Microporous and Mesoporous Materials, 2013, 169: 35–41
https://doi.org/10.1016/j.micromeso.2012.10.010
38 T Divya , C Anjali , K R Sunajadevi , K Anas , N K Renuka . Influence of hydrothermal synthesis conditions on lattice defects in cerium oxide. Journal of Solid State Chemistry, 2021, 300: 122253
https://doi.org/10.1016/j.jssc.2021.122253
39 B Tatar , E D Sam , K Kutlu , M Ürgen . Synthesis and optical properties of CeO2 nanocrystalline films grown by pulsed electron beam deposition. Journal of Materials Science, 2008, 43(15): 5102–5108
https://doi.org/10.1007/s10853-008-2750-7
40 A Hezam , K Namratha , Q A Drmosh , D Ponnamma , J Wang , S Prasad , M Ahamed , C Cheng , K Byrappa . CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Applied Nano Materials, 2020, 3(1): 138–148
https://doi.org/10.1021/acsanm.9b01833
41 D Wu , X Zhang , S Liu , Z Ren , Y Xing , X Jin , G Ni . Fabrication of a Z-scheme CeO2/Bi2O4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance. Journal of Alloys and Compounds, 2022, 909: 164671
https://doi.org/10.1016/j.jallcom.2022.164671
42 W Zhang , Z Bian , Y Peng , H Tang , H Wang . Dual-function oxygen vacancy of BiOBr intensifies pollutant adsorption and molecular oxygen activation to remove tetracycline hydrochloride. Chemical Engineering Journal, 2023, 451: 138731
https://doi.org/10.1016/j.cej.2022.138731
43 L S Reddy Yadav , K Lingaraju , B Daruka Prasad , C Kavitha , G Banuprakash , G Nagaraju . Synthesis of CeO2 nanoparticles: photocatalytic and antibacterial activities. European Physical Journal Plus, 2017, 132(5): 1–10
https://doi.org/10.1140/epjp/i2017-11462-4
44 J Pan , S Wang , A Chen , Y Chen , M Wang , Y Chen . Visible-light-active mesoporous ceria (CeO2) nanospheres for improved photocatalytic performance. Journal of Alloys and Compounds, 2022, 898: 162895
https://doi.org/10.1016/j.jallcom.2021.162895
45 D Channei , A Nakaruk , S Phanichphant . Photocatalytic degradation of dye using CeO2/SCB composite catalysts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 183: 218–224
https://doi.org/10.1016/j.saa.2017.04.063
46 H H Chen , Z H Jiang , X D Li , X F Lei . Effect of cerium nitrate concentration on morphologies, structure and photocatalytic activities of CeO2 nanoparticles synthesized by microwave interface method. Materials Letters, 2019, 257: 126666
https://doi.org/10.1016/j.matlet.2019.126666
47 G Killivalavan , B Sathyaseelan , G Kavitha , I Baskarann , K Senthilnathan , D Sivakumar , N Karthikeyan , E Manikandan , M Maaza . Cobalt metal ion doped cerium oxide (Co–CeO2) nanoparticles effect enhanced photocatalytic activity. MRS Advances, 2020, 5(48–49): 2503–2515
https://doi.org/10.1557/adv.2020.296
48 L V Trandafilović , D J Jovanović , X Zhang , S Ptasińska , M D Dramićanin . Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Applied Catalysis B: Environmental, 2017, 203: 740–752
https://doi.org/10.1016/j.apcatb.2016.10.063
[1] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[2] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[3] Tie Shi, Hailong Jia, Yanmei Feng, Bo Gong, Daimei Chen, Yu Liang, Hao Ding, Kai Chen, Derek Hao. Photoreduction adjusted surface oxygen vacancy of Bi2MoO6 for boosting photocatalytic redox performance[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1937-1948.
[4] Shangjun Fu, Kuiyi You, Zhenpan Chen, Taobo Liu, Qiong Wang, Fangfang Zhao, Qiuhong Ai, Pingle Liu, He’an Luo. Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1211-1223.
[5] Hongtao Xie, Qin Geng, Xiaoyue Liu, Jian Mao. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
[6] Luciano Atzori, Maria Giorgia Cutrufello, Daniela Meloni, Barbara Onida, Delia Gazzoli, Andrea Ardu, Roberto Monaci, Maria Franca Sini, Elisabetta Rombi. Characterization and catalytic activity of soft-templated NiO-CeO2 mixed oxides for CO and CO2 co-methanation[J]. Front. Chem. Sci. Eng., 2021, 15(2): 251-268.
[7] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[8] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[9] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[10] Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J]. Front. Chem. Sci. Eng., 2017, 11(4): 603-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed