Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 437-448    https://doi.org/10.1007/s11705-022-2228-1
RESEARCH ARTICLE
Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction
Zihuan Yu1, Haiqing Yan1, Chaonan Wang1, Zheng Wang1, Huiqin Yao2(), Rong Liu3(), Cheng Li4(), Shulan Ma1()
1. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
2. School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
3. Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
4. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
 Download: PDF(9705 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

Keywords molybdenum oxides      oxygen vacancies      heterostructure      electrocatalysts      hydrogen evolution reaction     
Corresponding Author(s): Huiqin Yao,Rong Liu,Cheng Li,Shulan Ma   
Online First Date: 17 January 2023    Issue Date: 24 March 2023
 Cite this article:   
Zihuan Yu,Haiqing Yan,Chaonan Wang, et al. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2228-1
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/437
  Scheme1 Schematic illustration of formation of oxygen-deficient MoOx/Ni3S2/NF composites.
Fig.1  XRD patterns of (a) MoOx/Ni3S2/NF-01, (b) MoOx/Ni3S2/NF-11 and (c) MoOx/Ni3S2/NF-21.
Fig.2  SEM images of (a, a′) MoOx/Ni3S2/NF-01, (b, b′) MoOx/Ni3S2/NF-11 and (c, c′) MoOx/Ni3S2/NF-21.
Fig.3  (a, b) TEM images of MoOx/Ni3S2-11, (c, d, e) HR-TEM images of MoOx/Ni3S2-11, and the visible lattice fringes images obtained from the blue and yellow square regions; (f) SAED pattern of MoOx/Ni3S2-11; (g) HAADF-STEM and energy dispersive spectroscopy elemental mappings of Mo, O and Ni of MoOx/Ni3S2-11; (h) electron paramagnetic resonance (EPR) spectrum of MoOx/Ni3S2/NF-11 before and after 60 h It test, and the control sample of com-MoO3.
Fig.4  X-ray photoelectron spectra with deconvolution of (a) Mo 3d, (b) O 1s for MoOx/Ni3S2/NF-11 and com-MoO3, (c) Ni 2p, and (d) S 2p for MoOx/Ni3S2/NF-11.
Catalystsη10/mVTafel slope/(mV?dec?1)Ref.
MoOx/Ni3S2/NF-117646This work
P-MoO3?xa)16642[11]
MoO3@RuO2b)11062[17]
Pd NDs/DR MoS2c)10341[41]
UDSL-MoS2-rGOd)ca. 21035[42]
Mo/Mo2Ce)8962[43]
(1T/2H) MoS2/α-MoO3f)23281[44]
MoP/NGg)9450[45]
MoCxh)14253[46]
Tab.1  HER performance of MoOx/Ni3S2/NF-11 and some reported electrocatalysts in 0.5 mol·L?1 H2SO4
Fig.5  (a) Polarization curves of MoOx/Ni3S2/NF-11, com-MoO3/NF, Ni3S2/NF and Pt–C/NF; (b) Tafel slopes of MoOx/Ni3S2/NF-11, com-MoO3/NF and Pt–C/NF derived from polarization curves; (c) Nyquist plots of MoOx/Ni3S2/NF-11, com-MoO3/NF and Pt–C/NF at ?200 mV versus RHE measured from electrochemical impedance spectroscopy (EIS) in the frequency range from 105 to 0.01 Hz; (d) plots of current density as a function of scan rates for MoOx/Ni3S2/NF-11, com-MoO3/NF and Pt–C/NF; (e) chronoamperometric curve of MoOx/Ni3S2/NF-11 at a constant applied potential of ?180 mV versus RHE; (f) polarization curves of before and after 100 h I–t test of MoOx/Ni3S2/NF-11. All the measurements were performed in a 0.5 mol·L?1 H2SO4 electrolyte.
Fig.6  (A) Optimized structures of (a) MoO3, (b) Ov-MoO3, (c) MoO3/Ni3S2, (d) Ov-MoO3/Ni3S2 with H* on O site and (e) Ov-MoO3/Ni3S2 with H* on Mo site and the corresponding H adsorption free energy (ΔGH*) at a potential U = 0 V relative to standard hydrogen electrode at pH = 0; (B) differential charge density distribution of Ov-MoO3/Ni3S2; (C) vacancy formation energy of Ov-MoO3/Ni3S2 and Ov-MoO3 and corresponding models. Symbols for atoms: Mo is cyan in A and C while purple in B, S is yellow, Ni is blue in A and C while grey in B, O is red and H* is white. The dotted box shows the position of oxygen vacancy.
Fig.7  XPS spectra of (a) Ni 2p, (b) O 1s, and (c) S 2p for MoOx/Ni3S2/NF-11 before and after HER testing, and (d) Mo 3d for MoOx/Ni3S2/NF-11 after HER testing.
1 X Zou, Y Zhang. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180
https://doi.org/10.1039/C4CS00448E
2 J A Turner. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
https://doi.org/10.1126/science.1103197
3 J D Holladay, J Hu, D L King, Y Wang. An overview of hydrogen production technologies. Catalysis Today, 2009, 139(4): 244–260
https://doi.org/10.1016/j.cattod.2008.08.039
4 W F Chen, J T Muckerman, E Fujita. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49(79): 8896–8909
https://doi.org/10.1039/c3cc44076a
5 J Zhang, T Wang, P Liu, Z Liao, S Liu, X Zhuang, M Chen, E Zschech, X Feng. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8(1): 15437
https://doi.org/10.1038/ncomms15437
6 V R Stamenkovic, B S Mun, M Arenz, K J J Mayrhofer, C A Lucas, G F Wang, P N Ross, N M Markovic. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247
https://doi.org/10.1038/nmat1840
7 K W Wang, X L She, S Chen, H L Liu, D H Li, Y Wang, H W Zhang, D J Yang, X D Yao. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(14): 5560–5565
https://doi.org/10.1039/C7TA10902D
8 W Lu, Y Song, M Dou, J Ji, F Wang. Ni3S2@MoO3 core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2018, 54(6): 646–649
https://doi.org/10.1039/C7CC08446C
9 X Wang, W Ma, C Ding, Z Xu, H Wang, X Zong, C Li. Amorphous multi-elements electrocatalysts with tunable bifunctionality toward overall water splitting. ACS Catalysis, 2018, 8(11): 9926–9935
https://doi.org/10.1021/acscatal.8b01839
10 Q Liang, H Jin, Z Wang, Y Xiong, S Yuan, X Zeng, D He, S Mu. Metal–organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy, 2019, 57: 746–752
https://doi.org/10.1016/j.nanoen.2018.12.060
11 L Li, T Zhang, J Yan, X Cai, S Liu. P doped MoO3−x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small, 2017, 13(25): 1700441
https://doi.org/10.1002/smll.201700441
12 H Sinaim, D J Ham, J S Lee, A Phuruangrat, S Thongtem, T Thongtem. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. Journal of Alloys and Compounds, 2012, 516: 172–178
https://doi.org/10.1016/j.jallcom.2011.12.024
13 Y H Zhu, Y Yao, Z Luo, C Q Pan, J Yang, Y R Fang, H T Deng, C X Liu, Q Tan, F D Liu, Y Guo. Nanostructured MoO3 for efficient energy and environmental catalysis. Molecules, 2020, 25(1): 26
14 J Li, Y Cheng, J Zhang, J Fu, W Yan, Q Xu. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804
https://doi.org/10.1021/acsami.9b07469
15 X Xue, J Zhang, I A Saana, J Sun, Q Xu, S Mu. Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10(35): 16531–16538
https://doi.org/10.1039/C8NR05270K
16 P T Liu, J Y Zhu, J Y Zhang, P X Xi, K Tao, D Q Gao, D S Xue. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Letters, 2017, 2(4): 745–752
https://doi.org/10.1021/acsenergylett.7b00111
17 H K Sadhanala, V K Harika, T R Penki, D Aurbach, A Gedanken. Ultrafine ruthenium oxide nanoparticles supported on molybdenum oxide nanosheets as highly efficient electrocatalyst for hydrogen evolution in acidic medium. ChemCatChem, 2019, 11(5): 1495–1502
https://doi.org/10.1002/cctc.201801990
18 K J H Lim, G Yilmaz, Y F Lim, G W Ho. Multi-compositional hierarchical nanostructured Ni3S2@MoSx/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20491–20499
https://doi.org/10.1039/C8TA06023A
19 T Kou, T Smart, B Yao, I Chen, D Thota, Y Ping, Y Li. Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium. Advanced Energy Materials, 2018, 8(19): 1703538
https://doi.org/10.1002/aenm.201703538
20 L L Feng, G Yu, Y Wu, G D Li, H Li, Y Sun, T Asefa, W Chen, X Zou. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026
https://doi.org/10.1021/jacs.5b08186
21 Y H Chang, C T Lin, T Y Chen, C L Hsu, Y H Lee, W Zhang, K H Wei, L J Li. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Advanced Materials, 2013, 25(5): 756–760
https://doi.org/10.1002/adma.201202920
22 C Tang, Z Pu, Q Liu, A M Asiri, Y Luo, X Sun. Ni3S2 nanosheets array supported on Ni foam: a novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. International Journal of Hydrogen Energy, 2015, 40(14): 4727–4732
https://doi.org/10.1016/j.ijhydene.2015.02.038
23 J Cao, J Zhou, Y Zhang, Y Wang, X Liu. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(2): 1752–1760
https://doi.org/10.1021/acsami.7b16407
24 Y Yang, H Yao, Z Yu, S M Islam, H He, M Yuan, Y Yue, K Xu, W Hao, G Sun, H Li, S Ma, P Zapol, M G Kanatzidis. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. Journal of the American Chemical Society, 2019, 141(26): 10417–10430
https://doi.org/10.1021/jacs.9b04492
25 T T Li, Y P Zuo, X M Lei, N Li, J W Liu, H Y Han. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(21): 8029–8040
https://doi.org/10.1039/C6TA01547F
26 T Tang, W J Jiang, S Niu, N Liu, H Luo, Y Y Chen, S F Jin, F Gao, L J Wan, J S Hu. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328
https://doi.org/10.1021/jacs.7b03507
27 W He, C Wang, H Li, X Deng, X Xu, T Zhai. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Advanced Energy Materials, 2017, 7(21): 1700983
https://doi.org/10.1002/aenm.201700983
28 J Yang, F J Zhang, X Wang, D S He, G Wu, Q H Yang, X Hong, Y Wu, Y D Li. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angewandte Chemie International Edition, 2016, 55(41): 12854–12858
https://doi.org/10.1002/anie.201604315
29 T Weber, J C Muijsers, J W Niemantsverdriet. Structure of amorphous MoS3. Journal of Physical Chemistry, 1995, 99(22): 9194–9200
https://doi.org/10.1021/j100022a037
30 L D Li, J Q Yan, T Wang, Z J Zhao, J Zhang, J L Gong, N J Guan. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 10
https://doi.org/10.1038/ncomms6881
31 J Li, Y Cheng, J Zhang, J Fu, W Yan, Q Xu. Confining Pd Nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS Applied Materials & Interfaces, 2019, 11(31): 27798–27804
https://doi.org/10.1021/acsami.9b07469
32 Q Kang, J Y Cao, Y J Zhang, L Q Liu, H Xu, J H Ye. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(18): 5766–5774
https://doi.org/10.1039/c3ta10689f
33 J Q Yan, Y X Zhang, S Z Liu, G J Wu, L D Li, N J Guan. Facile synthesis of an iron doped rutile TiO2 photocatalyst for enhanced visible-light-driven water oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(43): 21434–21438
https://doi.org/10.1039/C5TA07003A
34 F Xie, H Wu, J Mou, D Lin, C Xu, C Wu, X Sun. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
https://doi.org/10.1016/j.jcat.2017.10.013
35 W Zhou, X J Wu, X Cao, X Huang, C Tan, J Tian, H Liu, J Wang, H Zhang. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921
https://doi.org/10.1039/c3ee41572d
36 X Chia, N A A Sutrisnoh, M Pumera. Tunable Pt-MoSx hybrid catalysts for hydrogen evolution. ACS Applied Materials & Interfaces, 2018, 10(10): 8702–8711
https://doi.org/10.1021/acsami.7b19346
37 P Y Kuang, T Tong, K Fan, J G Yu. In situ fabrication of Ni−Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catalysis, 2017, 7(9): 6179–6187
https://doi.org/10.1021/acscatal.7b02225
38 B Wang, H Huang, T Sun, P Yan, T T Isimjan, J Tian, X Yang. Dissolution reconstruction of electron-transfer enhanced hierarchical NiSx−MoO2 nanosponges as a promising industrialized hydrogen evolution catalyst beyond Pt/C. Journal of Colloid and Interface Science, 2020, 567: 339–346
https://doi.org/10.1016/j.jcis.2020.02.027
39 Z Cheng, H Abernathy, M L Liu. Raman spectroscopy of nickel sulfide Ni3S2. Journal of Physical Chemistry C, 2007, 111(49): 17997–18000
https://doi.org/10.1021/jp0770209
40 Z Li, J Ma, B Zhang, C Song, D Wang. Crystal phase- and morphology-controlled synthesis of MoO3 materials. CrystEngComm, 2017, 19(11): 1479–1485
https://doi.org/10.1039/C6CE02437H
41 K Qi, S S Yu, Q Y Wang, W Zhang, J C Fan, W T Zheng, X Q Cui. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(11): 4025–4031
https://doi.org/10.1039/C5TA10337A
42 H L Huang, J Y Huang, W P Liu, Y P Fang, Y Liu. Ultradispersed and single-layered MoS2 nanoflakes strongly coupled with graphene: an optimized structure with high kinetics for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(45): 39380–39390
https://doi.org/10.1021/acsami.7b12038
43 J Xiong, J Li, J W Shi, X L Zhang, N T Suen, Z Liu, Y J Huang, G X Xu, W W Cai, X R Lei, L Feng, Z Yang, L Huang, H Cheng. In situ engineering of double-phase interface in Mo/Mo2C heteronanosheets for boosted hydrogen evolution reaction. ACS Energy Letters, 2018, 3(2): 341–348
https://doi.org/10.1021/acsenergylett.7b01180
44 A Manikandan, P R Ilango, C W Chen, Y C Wang, Y C Shih, L Lee, Z M M Wang, H Ko, Y L Chueh. A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/MoO3 hybrid heterostructured nanoflowers. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(31): 15320–15329
https://doi.org/10.1039/C8TA02496K
45 C Huang, C R Pi, X M Zhang, K Ding, P Qin, J J Fu, X Peng, B Gao, P K Chu, K F Huo. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small, 2018, 14(25): 7
https://doi.org/10.1002/smll.201800667
46 H B Wu, B Y Xia, L Yu, X Y Yu, X W Lou. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal−organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 8
https://doi.org/10.1038/ncomms7512
47 X Chen, G Liu, W Zheng, W Feng, W Cao, W Hu, P Hu. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544
https://doi.org/10.1002/adfm.201603674
48 L F Zhu, L J Liu, G M Huang, Q Zhao. Hydrogen evolution over N-doped CoS2 nanosheets enhanced by superaerophobicity and electronic modulation. Applied Surface Science, 2020, 504: 144490
https://doi.org/10.1016/j.apsusc.2019.144490
49 L He, W Zhang, Q Mo, W Huang, L Yang, Q Gao. Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548
https://doi.org/10.1002/anie.201914752
50 G Yilmaz, T Yang, Y Du, X Yu, Y Feng, L Shen, G Ho. Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Advancement of Science, 2019, 6(15): 1900140
[1] FCE-22056-of-YZ_suppl_1 Download
[1] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[2] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[3] Folin Liu, Shaohua Feng, Siyuan Xiu, Bin Yang, Yang Hou, Lecheng Lei, Zhongjian Li. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
[4] Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
[5] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[6] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[7] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
[8] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[9] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[10] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed