Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (4) : 37    https://doi.org/10.1007/s11705-024-2398-0
Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system
Wei Lan, Maodi Wang, Huicong Dai, Qihua Yang()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(13824 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The enzymatic redox reactions in natural photosynthesis rely much on the participation of cofactors, with reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) or their oxidized form (NAD+/NADP+) as an important redox power. The photocatalytic regeneration of expensive and unstable NADH/NADPH in vitro is an important process in enzymatic reduction and has attracted much research attention. Though different types of photocatalysts have been developed for photocatalytic NADH/NADPH regeneration, the efficiency is still relatively low. To elucidate the key factors affecting the performance of photocatalytic NADH/NADPH regeneration is helpful to rationally design the photocatalyst and improve the photocatalytic efficiency. In this paper, we overview the recent progress in photocatalytic NADH/NADPH regeneration with the focus on the strategies to improve the visible light adsorption, the charge separation and migration efficiency, as well as the surface reaction, which jointly determine the overall photocatalytic regeneration efficiency. The potential development of photocatalytic NADH/NADPH regeneration and photocatalytic-enzymatic-coupling system is prospected finally.

Keywords photocatalytic-enzymatic coupling      NAD(P)H regeneration      photocatalysis      efficiency     
Corresponding Author(s): Qihua Yang   
Just Accepted Date: 28 December 2023   Issue Date: 15 March 2024
 Cite this article:   
Wei Lan,Maodi Wang,Huicong Dai, et al. Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system[J]. Front. Chem. Sci. Eng., 2024, 18(4): 37.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2398-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I4/37
Fig.1  The schematic illustration of three main steps involved in photocatalytic NAD(P)H regeneration exemplified with semiconductor as the photocatalyst (VB: valence band; CB: conduction band).
Fig.2  The band structure of illuminated and excited (a) inorganic semiconductor and (b) photosensitizer/organic semiconductor.
Fig.3  Schematic illustration of the preparation of CdS QDs/silica gel photocatalyst. Reprinted with permission from reference [80] (copyright 2023, Elsevier).
Fig.4  The preparation process of g-C3N4-HTs@rP-QDs. Reprinted with permission from reference [81] (copyright 2018, American Chemical Society).
Fig.5  Enzymatic reduction of formaldehyde catalyzed by YADH in photo-enzymatic coupling system. Reprinted with permission from reference [89] (copyright 2020, American Chemical Society).
Fig.6  Preparation of COFs by the condensation of Ttba with different type of aldehyde monomers. Reprinted with permission from reference [94] (copyright 2021, American Chemical Society).
Fig.7  Structure of B-COF-2 and T-COF-2. Reprinted with permission from reference [95] (copyright 2020, American Chemical Society).
CatalystCatalyst amountTime/hYield/%Reference
N–TiO2@C1 mg70.3[49]
CdS QDs/silica gel1 mg·mL?10.268.8[80]
EY-S-g-C3N45 mg264.4 (NADH); 81.1 (NADPH)[63]
g-C3N4-HTs@rP-QDs0.8 mg·mL?10.180.5 ± 4.02[81]
(NO2)4TPP@g-C3N45 mg284.9[65]
MIL-125-NH21 g·L?1[96]
DBTS-CMP11 mg·mL?10.7584[89]
TZTZ-TA3 mg0.08382.0[90]
PTF-15 min1 cm × 3 cm298.5[93]
COF-40.5 mg1.594.6[94]
T-COF-23 mg0.16774.0[95]
Tab.1  Summarized results for photocatalytic NAD(P)H regeneration with different kinds of photocatalysts introduced in Section 2
Fig.8  Schematic illustration of photocatalyst with (a) type II heterostructure and (b) Z scheme structure.
Fig.9  Schematic illustration of typical core-shell structures: (a) spherical core-shell structure, (b) hexagonal core-shell structure, (c) core-shell structure with numerous small cores, (d) core-shell structure with multiple shells (nanomatryushka material), and (e) core-shell structure with a movable core. Reprinted with permission from reference [116] (copyright 2012, American Chemical Society).
Fig.10  NADPH regeneration yield as a function of time using different COFs as photocatalysts. Reprinted with permission from reference [120] (copyright 2023, American Chemical Society).
Fig.11  Schematic illustration of the preparation of PDA/g-C3N4. Reprinted with permission from reference [135] (copyright 2019, American Chemical Society).
Fig.12  Chemical structure of ATCN-DSCN in the plane. Reprinted with permission from reference [139] (copyright 2019, The Royal Society of Chemistry).
CatalystStrategyCatalyst amountTime/hYield/%Reference
g-C3N4-HTs@rP-QDsType II0.8 mg·mL?10.180.5 ± 4.02[81]
WS2/g-C3N4Type II3 mg~4.537.1[111]
PCN@PDBTS-HNZ-Scheme1.0 mg·mL?10.66785.4[102]
g-C3N4@TiO2Core-shell1 mg·mL?10.16782.1[118]
RF@PANICore-shell50 mg368.0[119]
Rh-COFBpy@HCOF25Core-shell1.0 mg·mL?10.83382.7[120]
RQCNsMetal co-catalyst20 mg250.5[124]
HRF-AuMetal co-catalyst20 mg280.4[128]
Au@Rh NFsMetal co-catalyst12~30% (NADH); ~26% (NADPH)[129]
PDA/g-C3N4Surface modification1 mg1.594.7[135]
ATCN-DSCND–A pair2 mg0.2574[139]
ACNInternal structure2 mg·mL–1162.3[140]
Tab.2  Summarized results of photocatalytic NADH regeneration by enhancing the charge separation and migration efficiency of the photocatalysts introduced in Section 3
Fig.13  Target product and possible by-products produced during NAD(P)+ reduction.
Fig.14  Schematic illustration for the preparation of PCN@TA/PEI-Rh. Reprinted with permission from reference [147] (copyright 2021, AAAS).
Fig.15  Schematic illustration for the preparation of DTS/Rh@CMPs. Reprinted with the permission from reference [151] (copyright 2022, American Chemical Society).
Fig.16  Schematic illustration of the photo-enzyme coupled system based on NKCOF-113. Reprinted with the permission from reference [152] (copyright 2022, Wiley).
Fig.17  The anticipation of the construction of a micro/nanoreactor for photocatalytic-enzymatic-coupling system.
1 H Wu , C Tian , X Song , C Liu , D Yang , Z Jiang . Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15(7): 1773–1789
https://doi.org/10.1039/c3gc37129h
2 X Wang , H H P Yiu . Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catalysis, 2016, 6(3): 1880–1886
https://doi.org/10.1021/acscatal.5b02820
3 X Wang , T Saba , H H P Yiu , R F Howe , J A Anderson , J Shi . Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem, 2017, 2(5): 621–654
https://doi.org/10.1016/j.chempr.2017.04.009
4 Y Zhang , Y Zhao , R Li , J Liu . Bioinspired NADH regeneration based on conjugated photocatalytic systems. Solar RRL, 2021, 5(2): 2000339
https://doi.org/10.1002/solr.202000339
5 Y Bai , L Wang , J Ge . Advances in photo-enzymatic-coupling catalysis system. Systems Microbiology and Biomanufacturing, 2021, 1(3): 245–256
https://doi.org/10.1007/s43393-021-00022-2
6 J B Jones , D W Sneddon , W Higgins , A J Lewis . Preparative-scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. Journal of the Chemical Society Chemical Communications, 1972, (15): 856–857
https://doi.org/10.1039/c39720000856
7 K E Taylor , J B Jones . Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds. Journal of the American Chemical Society, 1976, 98(18): 5689–5694
https://doi.org/10.1021/ja00434a047
8 F Hollmann , I W C E Arends , D Holtmann . Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285–2314
https://doi.org/10.1039/c1gc15424a
9 J Roche , K Groenen-Serrano , O Reynes , F Chauvet , T Tzedakis . NADH regenerated using immobilized FDH in a continuously supplied reactor—application to L-lactate synthesis. Chemical Engineering Journal, 2014, 239: 216–225
https://doi.org/10.1016/j.cej.2013.10.096
10 L Tensi , A Macchioni . Extremely fast NADH-regeneration using phosphonic acid as hydride source and iridium-pyridine-2-sulfonamidate catalysts. ACS Catalysis, 2020, 10(14): 7945–7949
https://doi.org/10.1021/acscatal.0c02261
11 V Ganesan , J J Kim , J Shin , K Park , S Yoon . Efficient nicotinamide adenine dinucleotide regeneration with a rhodium-carbene catalyst and isolation of a hydride intermediate. Inorganic Chemistry, 2022, 61(15): 5683–5690
https://doi.org/10.1021/acs.inorgchem.2c00059
12 J W H Burnett , J Li , A J McCue , P N Kechagiopoulos , R F Howe , X Wang . Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chemistry, 2022, 24(4): 1451–1455
https://doi.org/10.1039/D1GC04414A
13 M Wang , X Ren , M Guo , J Liu , H Li , Q Yang . Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6499–6506
https://doi.org/10.1021/acssuschemeng.1c02188
14 S Li , Y Cheng , Y Chen , J Li , Y Sun , J Shi , Z Jiang . Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317: 121772
https://doi.org/10.1016/j.apcatb.2022.121772
15 K T Oppelt , E Woss , M Stiftinger , W Schofberger , W Buchberger , G Knor . Photocatalytic reduction of artificial and natural nucleotide co-factors with a chlorophyll-like tin-dihydroporphyrin sensitizer. Inorganic Chemistry, 2013, 52(20): 11910–11922
https://doi.org/10.1021/ic401611v
16 X Ji , Y Kang , T Fan , Q Xiong , S Zhang , W Tao , H Zhang . An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. Journal of Materials Chemistry A, 2020, 8(1): 323–333
https://doi.org/10.1039/C9TA11167K
17 Y Zhang , W Yu , S Cao , Z Sun , X Nie , Y Liu , Z Zhao . Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3–CdS microspheres. ACS Catalysis, 2021, 11(21): 13408–13415
https://doi.org/10.1021/acscatal.1c04204
18 Z Goren , N Lapidot , I Willner . Photocatalysed regeneration of NAD(P)H by CdS and TiO2 semiconductors: applications in enzymatic synthesis. Journal of Molecular Catalysis, 1988, 47(1): 21–32
https://doi.org/10.1016/0304-5102(88)85069-7
19 S Immanuel , R Sivasubramanian . Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B, 2020, 262: 114705
https://doi.org/10.1016/j.mseb.2020.114705
20 F Liu , C Ding , S Tian , S M Lu , C Feng , D Tu , Y Liu , W Wang , C Li . Electrocatalytic NAD+ reduction via hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13(45): 13361–13367
https://doi.org/10.1039/D2SC02691K
21 Y S Lee , R Gerulskis , S D Minteer . Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Current Opinion in Biotechnology, 2022, 73: 14–21
https://doi.org/10.1016/j.copbio.2021.06.013
22 C Singh , A Kumar , R K Yadav , V L Gole , D K Dwivedi . Solar light-driven photocatalyst-enzyme attached artificial photosynthetic system for regeneration and production of 1,4-NADH and L-glutamate. Vietnam Journal of Chemistry, 2021, 59(2): 198–202
23 S Zhang , S Liu , Y Sun , S Li , J Shi , Z Jiang . Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50(24): 13449–13466
https://doi.org/10.1039/D1CS00392E
24 S S Bhoware , K Y Kim , J A Kim , Q Wu , J Kim . Photocatalytic activity of Pt nanoparticles for visible light-driven production of NADH. Journal of Physical Chemistry C, 2011, 115(5): 2553–2557
https://doi.org/10.1021/jp1092652
25 J Huang , M Antonietti , J Liu . Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2(21): 7686–7693
https://doi.org/10.1039/C4TA00793J
26 X Huang , J Liu , Q Yang , Y Liu , Y Zhu , T Li , Y H Tsang , X Zhang . Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6(104): 101974–101980
https://doi.org/10.1039/C6RA21390A
27 J Liu , J Huang , H Zhou , M Antonietti . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440
https://doi.org/10.1021/am501319v
28 D H Nam , S H Lee , C B Park . CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small, 2010, 6(8): 922–926
https://doi.org/10.1002/smll.201000077
29 X Ji , J Wang , L Mei , W Tao , A Barrett , Z Su , S Wang , G Ma , J Shi , S Zhang . Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Advanced Functional Materials, 2018, 28(9): 1705083
https://doi.org/10.1002/adfm.201705083
30 Q Pan , H Liu , Y Zhao , S Chen , B Xue , X Kan , X Huang , J Liu , Z Li . Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Applied Materials & Interfaces, 2019, 11(3): 2740–2744
https://doi.org/10.1021/acsami.8b03311
31 Q Shi , D Yang , Z Jiang , J Li . Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48
https://doi.org/10.1016/j.molcatb.2006.06.005
32 J Liu , M Antonietti . Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy & Environmental Science, 2013, 6(5): 1486–1493
https://doi.org/10.1039/c3ee40696b
33 A Bavykina , N Kolobov , I S Khan , J A Bau , A Ramirez , J Gascon . Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120(16): 8468–8535
https://doi.org/10.1021/acs.chemrev.9b00685
34 X Gan , D Lei , K Y Wong . Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10: 352–367
https://doi.org/10.1016/j.mtener.2018.10.015
35 Y Yang , H Chen , J Lu . Inactivation of algae by visible-light-driven modified photocatalysts: a review. Science of the Total Environment, 2023, 858: 159640
https://doi.org/10.1016/j.scitotenv.2022.159640
36 T Kawawaki , M Kawachi , D Yazaki , Y Akinaga , D Hirayama , Y Negishi . Development and functionalization of visible-light-driven water-splitting photocatalysts. Nanomaterials, 2022, 12(3): 344
https://doi.org/10.3390/nano12030344
37 D Mandler , I Willner . Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions 2, 1986, (6): 805–811
https://doi.org/10.1039/p29860000805
38 S N Habisreutinger , L Schmidt-Mende , J K Stolarczyk . Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
https://doi.org/10.1002/anie.201207199
39 J Kosco , F Moruzzi , B Willner , I McCulloch . Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 2020, 10(39): 2001935
https://doi.org/10.1002/aenm.202001935
40 M E G Carmo , L Spies , G N Silva , O F Lopes , T Bein , J Schneider , A O T Patrocinio . From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO2 reduction. Journal of Materials Chemistry A, 2023, 11(26): 13815–13843
https://doi.org/10.1039/D3TA01470C
41 Y Guo , Q Zhou , B Zhu , C Y Tang , Y Zhu . Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catalysis, 2023, 1(4): 333–352
https://doi.org/10.1039/D3EY00047H
42 S Y Lee , S J Park . TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769
https://doi.org/10.1016/j.jiec.2013.07.012
43 K Nakata , A Fujishima . TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
44 A Fujishima , X Zhang , D Tryk . TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
https://doi.org/10.1016/j.surfrep.2008.10.001
45 R Asahi , T Morikawa , H Irie , T Ohwaki . Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852
https://doi.org/10.1021/cr5000738
46 R Asahi , T Morikawa , T Ohwaki , K Aoki , Y Taga . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051
47 A Mancuso , N Blangetti , O Sacco , F S Freyria , B Bonelli , S Esposito , D Sannino , V Vaiano . Photocatalytic degradation of crystal violet dye under visible light by Fe-doped TiO2 prepared by reverse-micelle sol-gel method. Nanomaterials, 2023, 13(2): 270
https://doi.org/10.3390/nano13020270
48 D Chen , D Yang , Q Wang , Z Jiang . Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45(12): 4110–4116
https://doi.org/10.1021/ie0600902
49 F LiuH CaoL XuH FuS SunZ XiaoC SunX LongY XiaS Wang. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. Journal of Colloid and Interface Science, 2022, 629(Part B): 336–344
50 A Naseri , M Samadi , A Pourjavadi , A Z Moshfegh , S Ramakrishna . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5(45): 23406–23433
https://doi.org/10.1039/C7TA05131J
51 A Thomas , A Fischer , F Goettmann , M Antonietti , J O Müller , R Schlögl , J M Carlsson . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893–4908
https://doi.org/10.1039/b800274f
52 J Liu , R Cazelles , Z P Chen , H Zhou , A Galarneau , M Antonietti . The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14699–14705
https://doi.org/10.1039/C4CP01348D
53 A Tripathi , R K Yadav , S Singh , R Shahin , D K Dwivedi , N K Gupta , T W Kim , R K Verma , K Kumar . A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C(sp3)–F bond and NADH under sunlight. Diamond and Related Materials, 2023, 136: 109998
https://doi.org/10.1016/j.diamond.2023.109998
54 C Singh , S Chaubey , P Singh , K Sharma , A Shambhavi , R K Kumar , D K Yadav , J O Dwivedi , U Baeg . et al.. Self-assembled carbon nitride/cobalt(III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101: 107648
https://doi.org/10.1016/j.diamond.2019.107648
55 F Xie , H Jia , C K T Wun , X Huang , Y Chai , C C Tsoi , Z Pan , S Zhu , K Ren , T W B Lo . et al.. Dual-defect abundant graphitic carbon nitride for efficient photocatalytic nicotinamide cofactor regeneration. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 11002–11011
https://doi.org/10.1021/acssuschemeng.3c00361
56 N Swarnkar , R K Yadav , S Singh , R Shahin , R K Shukla , S K Tripathi , D K Dwivedi , S Nath , C Singh , J O Baeg . Highly selective in-situ prepared g-C3N4/P-B composite photocatalyst for direct C–H bond arylation and NADH regeneration cofactor under solar light. Journal of Chemical Sciences, 2023, 135(2): 29
https://doi.org/10.1007/s12039-023-02150-9
57 D R Paul , R Sharma , S Singh , P Singh , P Panchal , A Sharma , P Devi , S P Nehra . Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. International Journal of Hydrogen Energy, 2023, 48(96): 37746–37761
https://doi.org/10.1016/j.ijhydene.2022.12.178
58 J Wen , J Xie , X Chen , X Li . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
https://doi.org/10.1016/j.apsusc.2016.07.030
59 S K Gupta , A K Gupta , R K Yadav , A Singh , B C Yadav . Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochemistry and Photobiology, 2022, 98(1): 160–168
https://doi.org/10.1111/php.13484
60 K Wang , Q Li , B Liu , B Cheng , W Ho , J Yu . Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176–177: 44–52
https://doi.org/10.1016/j.apcatb.2015.03.045
61 M H Vu , M Sakar , C C Nguyen , T O Do . Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194–4203
https://doi.org/10.1021/acssuschemeng.7b04598
62 C Sun , H Zhang , H Liu , X Zheng , W Zou , L Dong , L Qi . Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235: 66–74
https://doi.org/10.1016/j.apcatb.2018.04.050
63 P Singh , R K Yadav , K Kumar , Y Lee , A K Gupta , K Kumar , B C Yadav , S N Singh , D K Dwivedi , S H Nam . et al.. Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science & Technology, 2021, 11(19): 6401–6410
https://doi.org/10.1039/D1CY00991E
64 P Zhang , J Hu , Y Shen , X Yang , J Qu , F Du , W Sun , C M Li . Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid. ACS Applied Materials & Interfaces, 2021, 13(39): 46650–46658
https://doi.org/10.1021/acsami.1c13167
65 S Mishra , R K Yadav , S Singh , S Chaubey , P Singh , C Singh , S K Gupta , S Gupta , D Tiwary , T W Kim . Solar light responsive graphitic carbon nitride coupled porphyrin photocatalyst that uses for solar fine chemical production. Photochemistry and Photobiology, 2023, 99(4): 1080–1091
https://doi.org/10.1111/php.13735
66 L Cheng , Q Xiang , Y Liao , H Zhang . CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391
https://doi.org/10.1039/C7EE03640J
67 C Prasad , N Madkhali , J S Won , J E Lee , S Sangaraju , H Y Choi . CdS based heterojunction for water splitting: a review. Materials Science and Engineering B, 2023, 292: 116413
https://doi.org/10.1016/j.mseb.2023.116413
68 Q Li , X Li , S Wageh , A A Al-Ghamdi , J G Yu . CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1500010
https://doi.org/10.1002/aenm.201500010
69 W Chen , G B Huang , H Song , J Zhang . Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8(40): 20963–20969
https://doi.org/10.1039/D0TA06177H
70 D J Fermín , E A Ponomarev , L M Peter . A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1999, 473(1–2): 192–203
https://doi.org/10.1016/S0022-0728(99)00109-6
71 X Xiang , B Zhu , B Cheng , J Yu , H Lv . Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16(26): 2001024
https://doi.org/10.1002/smll.202001024
72 A M Roy , G C De , N Sasmal , S S Bhattacharyya . Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. International Journal of Hydrogen Energy, 1995, 20(8): 627–630
https://doi.org/10.1016/0360-3199(94)00105-9
73 C Wu , W Huang , H Liu , K Lv , Q Li . Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 2023, 330: 122653
https://doi.org/10.1016/j.apcatb.2023.122653
74 Y Chen , W Zhong , F Chen , P Wang , J Fan , H Yu . Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27
https://doi.org/10.1016/j.jmst.2021.12.051
75 Y Tang , X Hu , C Liu . Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16(46): 25321–25329
https://doi.org/10.1039/C4CP04057K
76 H Zhang , Y Zhu . Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. Journal of Physical Chemistry C, 2010, 114(13): 5822–5826
https://doi.org/10.1021/jp910930t
77 D Wang , C Bao , Q Luo , R Yin , X Li , J An , Z Xu . Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. Journal of Environmental Chemical Engineering, 2015, 3(3): 1578–1585
https://doi.org/10.1016/j.jece.2015.05.013
78 X Ning , W Zhen , Y Wu , G Lu . Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383
https://doi.org/10.1016/j.apcatb.2017.12.067
79 Z Lu , H Yan , B Li , M Song , Y Hang , G Zhou , Y Xu , C Ma , S Han , X Liu . Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605: 154694
https://doi.org/10.1016/j.apsusc.2022.154694
80 C Gao , S Zhang , F Feng , S Hu , Q Zhao , Y Chen . Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science, 2023, 652: 1043–1052
https://doi.org/10.1016/j.jcis.2023.08.090
81 D Yang , Y Zhang , H Zou , S Zhang , Y Wu , Z Cai , J Shi , Z Jiang . Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 285–295
https://doi.org/10.1021/acssuschemeng.8b03318
82 Y Wu , J Ward Bond , D Li , S Zhang , J Shi , Z Jiang . g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catalysis, 2018, 8(7): 5664–5674
https://doi.org/10.1021/acscatal.8b00070
83 L Chen , Y Yang , D Jiang . CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. Journal of the American Chemical Society, 2010, 132(26): 9138–9143
https://doi.org/10.1021/ja1028556
84 R Freund , O Zaremba , G Arnauts , R Ameloot , G Skorupskii , M Dinca , A Bavykina , J Gascon , A Ejsmont , J Goscianska . et al.. The current status of MOF and COF applications. Angewandte Chemie International Edition, 2021, 60(45): 23975–24001
https://doi.org/10.1002/anie.202106259
85 C Wang , J Li , X Lv , Y Zhang , G Guo . Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
https://doi.org/10.1039/C4EE01299B
86 Y Xie , T Wang , X Liu , K Zou , W Deng . Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4(1): 1960
https://doi.org/10.1038/ncomms2960
87 J S M Lee , A I Cooper . Advances in conjugated microporous polymers. Chemical Reviews, 2020, 120(4): 2171–2214
https://doi.org/10.1021/acs.chemrev.9b00399
88 J X Jiang , F Su , A Trewin , C D Wood , N L Campbell , H Niu , C Dickinson , A Y Ganin , M J Rosseinsky , Y Z Khimyak . et al.. Conjugated microporous poly(aryleneethynylene) networks. Angewandte Chemie International Edition, 2007, 46(45): 8574–8578
https://doi.org/10.1002/anie.200701595
89 F Lan , Q Wang , H Chen , Y Chen , Y Zhang , B Huang , H Liu , J Liu , R Li . Preparation of hydrophilic conjugated microporous polymers for efficient visible light-driven nicotinamide adenine dinucleotide regeneration and photobiocatalytic formaldehyde reduction. ACS Catalysis, 2020, 10(21): 12976–12986
https://doi.org/10.1021/acscatal.0c03652
90 Y Wang , H Liu , Q Pan , N Ding , C Yang , Z Zhang , C Jia , Z Li , J Liu , Y Zhao . Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12(41): 46483–46489
https://doi.org/10.1021/acsami.0c12173
91 A P Côté , A I Benin , N W Ockwig , M O’Keeffe , A J Matzger , O M Yaghi . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
https://doi.org/10.1126/science.1120411
92 Q Liang , Z Li , Z Huang , F Kang , Q Yang . Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Advanced Functional Materials, 2015, 25(44): 6885–6892
https://doi.org/10.1002/adfm.201503221
93 D Yadav , A Kumar , J Y Kim , N J Park , J O Baeg . Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis. Journal of Materials Chemistry A, 2021, 9(15): 9573–9580
https://doi.org/10.1039/D1TA00802A
94 N Singh , D Yadav , S V Mulay , J Y Kim , N J Park , J O Baeg . Band gap engineering in solvochromic 2D covalent organic framework photocatalysts for visible light-driven enhanced solar fuel production from carbon dioxide. ACS Applied Materials & Interfaces, 2021, 13(12): 14122–14131
https://doi.org/10.1021/acsami.0c21117
95 Y Wang , H Liu , Q Pan , C Wu , W Hao , J Xu , R Chen , J Liu , Z Li , Y Zhao . Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. Journal of the American Chemical Society, 2020, 142(13): 5958–5963
https://doi.org/10.1021/jacs.0c00923
96 M E Aguirre , R Isla Naveira , P M Botta , T A Altieri , A Wolosiuk , M S Churio . Early instability of MIL-125-NH2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45(23): 10277–10286
https://doi.org/10.1039/D1NJ01199E
97 R M Mohamed , F M Ibrahim . Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. Journal of Industrial and Engineering Chemistry, 2015, 22: 28–33
https://doi.org/10.1016/j.jiec.2014.06.021
98 H Li , J Liu , M Wang , X Ren , C Li , Y Ren , Q Yang . Fabrication of nanoCOF/polyoxometallate composites for photocatalytic NADH regeneration via cascade electron relay. Solar RRL, 2021, 5(1): 2000641
https://doi.org/10.1002/solr.202000641
99 S Chen , H Zhang , X Fu , Y Hu . Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275: 335–341
https://doi.org/10.1016/j.apsusc.2012.12.040
100 K Tsutsumi , F Uchikawa , K Sakai , K Tabata . Photoinduced reduction of nitroarenes using a transition-metal-loaded silicon semiconductor under visible light irradiation. ACS Catalysis, 2016, 6(7): 4394–4398
https://doi.org/10.1021/acscatal.6b00886
101 B Yang , W Luo , Q Liao , J Zhu , M Gan , X Liu , G Qiu . Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200–211
https://doi.org/10.1016/S1003-6326(19)65192-7
102 S Wang , X Wu , J Fang , F Zhang , Y Liu , H Liu , Y He , M Luo , R Li . Direct Z-scheme polymer/polymer double-shell hollow nanostructures for efficient NADH regeneration and biocatalytic artificial photosynthesis under visible light. ACS Catalysis, 2023, 13(7): 4433–4443
https://doi.org/10.1021/acscatal.2c05722
103 Y Tian , Y Zhou , Y Zong , J Li , N Yang , M Zhang , Z Guo , H Song . Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials & Interfaces, 2020, 12(31): 34795–34805
https://doi.org/10.1021/acsami.0c06684
104 R Marschall . Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440
https://doi.org/10.1002/adfm.201303214
105 Z Sun , H Wang , Z Wu , L Wang . g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300: 160–172
https://doi.org/10.1016/j.cattod.2017.05.033
106 Y Zheng , Y Chen , B Gao , B Lin , X Wang . Phosphorene-based heterostructured photocatalysts. Engineering, 2021, 7(7): 991–1001
https://doi.org/10.1016/j.eng.2021.06.004
107 X Niu , X Bai , Z Zhou , J Wang . Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catalysis, 2020, 10(3): 1976–1983
https://doi.org/10.1021/acscatal.9b04753
108 J Tu , W Wu , X Lei , P Li . The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega, 2022, 7(42): 37061–37069
https://doi.org/10.1021/acsomega.2c01977
109 M Xiao , Z Wang , M Lyu , B Luo , S Wang , G Liu , H M Cheng , L Wang . Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369
https://doi.org/10.1002/adma.201801369
110 H Wang , Q Lin , L Yin , Y Yang , Y Qiu , C Lu , H Yang . Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16): 1900011
https://doi.org/10.1002/smll.201900011
111 P Zeng , X Ji , Z Su , S Zhang . WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8(37): 20557–20567
https://doi.org/10.1039/C8RA02807A
112 J Low , J Yu , M Jaroniec , S Wageh , A A Al-Ghamdi . Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694
https://doi.org/10.1002/adma.201601694
113 B J Ng , L K Putri , X Y Kong , Y W Teh , P Pasbakhsh , S P Chai . Z-scheme photocatalytic systems for solar water splitting. Advanced Materials, 2020, 7(7): 1903171
114 Q Xu , L Zhang , J Yu , S Wageh , A A Al Ghamdi , M Jaroniec . Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10): 1042–1063
https://doi.org/10.1016/j.mattod.2018.04.008
115 R Singh , R Bhateria . Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 2021, 43(7): 2459–2482
https://doi.org/10.1007/s10653-020-00766-1
116 R Ghosh Chaudhuri , S Paria . Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4): 2373–2433
https://doi.org/10.1021/cr100449n
117 S Das , Ramírez J Pérez , J Gong , N Dewangan , K Hidajat , B C Gates , S Kawi . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
https://doi.org/10.1039/C9CS00713J
118 D Yang , Y Zhang , S Zhang , Y Cheng , Y Wu , Z Cai , X Wang , J Shi , Z Jiang . Coordination between electrontransfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2019, 9(12): 11492–11501
https://doi.org/10.1021/acscatal.9b03462
119 L Zhou , Z Su , J Wang , Y Cai , N Ding , L Wang , J Zhang , Y Liu , J Lei . Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Applied Catalysis B: Environmental, 2024, 341: 123290
https://doi.org/10.1016/j.apcatb.2023.123290
120 H Zhao , L Wang , G Liu , Y Liu , S Zhang , L Wang , X Zheng , L Zhou , J Gao , J Shi . et al.. Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2023, 13(10): 6619–6629
https://doi.org/10.1021/acscatal.2c06332
121 J Yang , D Wang , H Han , C Li . Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
https://doi.org/10.1021/ar300227e
122 Y Qi , J Zhang , Y Kong , Y Zhao , S Chen , D Li , W Liu , Y Chen , T Xie , J Cui . et al.. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13(1): 484
https://doi.org/10.1038/s41467-022-28146-6
123 N Xiao , S Li , X Li , L Ge , Y Gao , N Li . The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671
https://doi.org/10.1016/S1872-2067(19)63469-8
124 Y ZhouY HeM GaoN DingJ LeiY Zhou. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system. Chinese Chemical Letters, 2024(2), 35: 108690
125 P K Jain , X Huang , I H El Sayed , M A El Sayed . Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3): 107–118
https://doi.org/10.1007/s11468-007-9031-1
126 M Fang , X Tan , Z Liu , B Hu , X Wang . Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, 2021: 9794329
https://doi.org/10.34133/2021/9794329
127 J Jiang , X Wang , H Guo . Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small, 2023, 19(33): 2301280
https://doi.org/10.1002/smll.202301280
128 S Zhou , Y Cai , J Zhang , Y Liu , L Zhou , J Lei . Au-loaded resorcinol-formaldehyde resin photocatalysts: hollow sphere structure design and localized surface plasmon resonance effect synergistically promote efficient nicotinamide adenine dinucleotide (NADH) regeneration. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14464–14473
https://doi.org/10.1021/acssuschemeng.2c03811
129 A Dhankhar , V Jain , I N Chakraborty , P P Pillai . Enhancing the photocatalytic regeneration of nicotinamide cofactors with surface engineered plasmonic antenna-reactor system. Journal of Photochemistry and Photobiology A Chemistry, 2023, 437: 114472
https://doi.org/10.1016/j.jphotochem.2022.114472
130 S Wang , Y Gao , S Miao , T Liu , L Mu , R Li , F Fan , C Li . Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society, 2017, 139(34): 11771–11778
https://doi.org/10.1021/jacs.7b04470
131 S Zhao , Y Zhang , Y Zhou , J Fang , Y Wang , C Zhang , W Chen . Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science, 2018, 53(8): 6008–6020
https://doi.org/10.1007/s10853-018-1995-z
132 P Pachfule , A Acharjya , J Roeser , T Langenhahn , M Schwarze , R Schomacker , A Thomas , J Schmidt . Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society, 2018, 140(4): 1423–1427
https://doi.org/10.1021/jacs.7b11255
133 L Zhang , Q Zhao , L Shen , Q Li , T Liu , L Hou , J Yang . Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catalysis Science & Technology, 2022, 12(2): 509–518
https://doi.org/10.1039/D1CY01606G
134 C Feng , Z Wu , K Huang , J Ye , H Zhang . Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180
https://doi.org/10.1002/adma.202200180
135 B Ma , S Sun , H He , R Lv , J Deng , T Huo , Y Zhao , H Yu , L Zhou . An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration. Industrial & Engineering Chemistry Research, 2019, 58(51): 23567–23573
https://doi.org/10.1021/acs.iecr.9b05038
136 C Li , J Liu , H Li , K Wu , J Wang , Q Yang . Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 2357
https://doi.org/10.1038/s41467-022-30035-x
137 C Dai , B Liu . Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52
https://doi.org/10.1039/C9EE01935A
138 Z Lan , W Ren , X Chen , Y Zhang , X Wang . Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245: 596–603
https://doi.org/10.1016/j.apcatb.2019.01.010
139 J Meng , Y Tian , C Li , X Lin , Z Wang , L Sun , Y Zhou , J Li , N Yang , Y Zong . et al.. A thiophene-modified doubleshell hollow g-C3N4 nanosphere boosts NADH regeneration via synergistic enhancement of charge excitation and separation. Catalysis Science & Technology, 2019, 9(8): 1911–1921
https://doi.org/10.1039/C9CY00180H
140 E J Son , Y W Lee , J W Ko , C B Park . Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2545–2552
https://doi.org/10.1021/acssuschemeng.8b05487
141 A Linsebigler , G Lu , J T Yates . Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758
https://doi.org/10.1021/cr00035a013
142 X Ning , S Meng , X Fu , X Ye , S Chen . Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18(12): 3628–3639
https://doi.org/10.1039/C6GC00572A
143 M A Emmanuel , S G Bender , C Bilodeau , J M Carceller , J S DeHovitz , H Fu , Y Liu , B T Nicholls , Y Ouyang , C G Page . et al.. Photobiocatalytic strategies for organic synthesis. Chemical Reviews, 2023, 123(9): 5459–5520
https://doi.org/10.1021/acs.chemrev.2c00767
144 J J Concepcion , J W Jurss , M K Brennaman , P G Hoertz , A O T Patrocinio , N Y Murakami Iha , J L Templeton , T J Meyer . Making oxygen with ruthenium complexes. Accounts of Chemical Research, 2009, 42(12): 1954–1965
https://doi.org/10.1021/ar9001526
145 V K Sharma , J M Hutchison , A M Allgeier . Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods. ChemSusChem, 2022, 15(22): e202200888
https://doi.org/10.1002/cssc.202200888
146 Y Zhang , J Liu . Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction. Chemistry A European Journal, 2022, 28(55): e202201430
https://doi.org/10.1002/chem.202201430
147 Y Cheng , J Shi , Y Wu , X Wang , Y Sun , Z Cai , Y Chen , Z Jiang . Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research, 2021, 2021: 8175709
https://doi.org/10.34133/2021/8175709
148 X Xing , Y Liu , M Shi , K Li , X Fan , Z Wu , N Wang , X Yu . Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. New Journal of Chemistry, 2022, 46(13): 6274–6282
https://doi.org/10.1039/D1NJ06000G
149 G Lin , Y Zhang , Y Hua , C Zhang , C Jia , D Ju , C Yu , P Li , J Liu . Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angewandte Chemie International Edition, 2022, 61(31): e202206283
https://doi.org/10.1002/anie.202206283
150 Y Wu , J Shi , D Li , S Zhang , B Gu , Q Qiu , Y Sun , Y Zhang , Z Cai , Z Jiang . Synergy of electron transfer and electron utilization via metal-organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catalysis, 2020, 10(5): 2894–2905
https://doi.org/10.1021/acscatal.9b05240
151 X Wu , S Wang , J Fang , H Chen , H Liu , R Li . Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Applied Materials & Interfaces, 2022, 14(34): 38895–38904
https://doi.org/10.1021/acsami.2c11174
152 Z Zhao , D Zheng , M Guo , J Yu , S Zhang , Z Zhang , Y Chen . Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angewandte Chemie International Edition, 2022, 61(12): e202200261
https://doi.org/10.1002/anie.202200261
153 J Liu , X Ren , C Li , M Wang , H Li , Q Yang . Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310: 121314
https://doi.org/10.1016/j.apcatb.2022.121314
154 Y Zhao , H Liu , C Wu , Z Zhang , Q Pan , F Hu , R Wang , P Li , X Huang , Z Li . Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381
https://doi.org/10.1002/anie.201901194
155 S Roy , V Jain , R K Kashyap , A Rao , P P Pillai . Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catalysis, 2020, 10(10): 5522–5528
https://doi.org/10.1021/acscatal.0c01478
156 Z Zhang , J Tong , X Meng , Y Cai , S Ma , F Huo , J Luo , B Xu , S Zhang , M Pinelo . Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11503–11511
https://doi.org/10.1021/acssuschemeng.1c03737
157 J H Kim , S H Lee , J S Lee , M Lee , C B Park . Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chemical Communications, 2011, 47(37): 10227–10229
https://doi.org/10.1039/c1cc12222c
158 Y Wang , J Sun , H Zhang , Z Zhao , W Liu . Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catalysis Science & Technology, 2018, 8(10): 2578–2587
https://doi.org/10.1039/C8CY00320C
159 Y Kita , Y Amao . Visible-light-driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with a system of hybridized photocatalytic NADH regeneration and multi-biocatalysts. Green Chemistry, 2023, 25(7): 2699–2710
https://doi.org/10.1039/D3GC00247K
160 D Huang , Z P Ju , C S Li , C M Yao , J Guo . First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101
https://doi.org/10.7498/aps.63.247101
161 Y Ye , Z Zang , T Zhou , F Dong , S Lu , X Tang , W Wei , Y Zhang . Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357: 100–107
https://doi.org/10.1016/j.jcat.2017.11.002
162 L Ge , Y Ke , X Li . Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806
https://doi.org/10.1039/D3CC00989K
163 H Mai , T C Le , D Chen , D A Winkler , R A Caruso . Machine learning for electrocatalyst and photocatalyst design and discovery. Chemical Reviews, 2022, 122(16): 13478–13515
https://doi.org/10.1021/acs.chemrev.2c00061
164 G K Mor , K Shankar , M Paulose , O K Varghese , C A Grimes . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
https://doi.org/10.1021/nl052099j
165 C Chen , W Ma , J Zhao . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219
https://doi.org/10.1039/b921692h
166 G N Hargenrader , R B Weerasooriya , S Ilic , J Niklas , O G Poluektov , K D Glusac . Photoregeneration of biomimetic nicotinamide adenine dinucleotide analogues via a dye-sensitized approach. ACS Applied Energy Materials, 2019, 2(1): 80–91
https://doi.org/10.1021/acsaem.8b01574
167 A Mishra , M K Fischer , P Bauerle . Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
https://doi.org/10.1002/anie.200804709
168 M Mojiri-Foroushani , H Dehghani , N Salehi-Vanani . Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92: 315–322
https://doi.org/10.1016/j.electacta.2013.01.055
169 F Mendizabal , R Mera Adasme , W H Xu , D Sundholm . Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7(68): 42677–42684
https://doi.org/10.1039/C7RA08648B
170 N A Ludin , A M Al Alwani Mahmoud , A Bakar Mohamad , A A H Kadhum , K Sopian , N S Abdul Karim . Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews, 2014, 31: 386–396
https://doi.org/10.1016/j.rser.2013.12.001
171 K L Wu , C H Li , Y Chi , J N Clifford , L Cabau , E Palomares , Y M Cheng , H A Pan , P T Chou . Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488–7496
https://doi.org/10.1021/ja300828f
172 T T LeM S AkhtarD M ParkJ C LeeO B Yang. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Applied Catalysis B: Environmental, 2012, 111–112: 397–401
173 Y Li , C Xie , S Peng , G Lu , S Li . Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282(1–2): 117–123
https://doi.org/10.1016/j.molcata.2007.12.005
174 M Ge , Q Li , C Cao , J Huang , S Li , S Zhang , Z Chen , K Zhang , S S Al-Deyab , Y Lai . One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152
https://doi.org/10.1002/advs.201600152
175 S D Perera , R G Mariano , K Vu , N Nour , O Seitz , Y Chabal , K J Jr Balkus . Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2012, 2(6): 949–956
https://doi.org/10.1021/cs200621c
176 Y K Jo , J M Lee , S Son , S J Hwang . 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 150–190
https://doi.org/10.1016/j.jphotochemrev.2018.03.002
177 S Liang , R Liang , L Wen , R Yuan , L Wu , X Fu . Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Applied Catalysis B: Environmental, 2012, 125: 103–110
https://doi.org/10.1016/j.apcatb.2012.05.017
178 K Dong , T A Le , Y Nakibli , A Schleusener , M Wächtler , L Amirav . Molecular metallocorrole-nanorod photocatalytic system for sustainable hydrogen production. ChemSusChem, 2022, 15(17): e202200804
https://doi.org/10.1002/cssc.202200804
179 P Tongying , F Vietmeyer , D Aleksiuk , G J Ferraudi , G Krylova , M Kuno . Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6(8): 4117–4124
https://doi.org/10.1039/C4NR00298A
180 J Xu , T Qin , W Chen , J Lv , X Zeng , J Sun , Y Li , J Zhou . Synergizing piezoelectric and plasmonic modulation of Ag/BiFeO3 fibrous heterostructure toward boosted photoelectrochemical energy conversion. Nano Energy, 2021, 89: 106317
https://doi.org/10.1016/j.nanoen.2021.106317
181 S Xu , L Guo , Q Sun , Z Wang . Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Advanced Functional Materials, 2019, 29(13): 1808737
https://doi.org/10.1002/adfm.201808737
182 Z Jiang , X Tan , Y Huang . Piezoelectric effect enhanced photocatalysis in environmental remediation: state-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806: 150924
https://doi.org/10.1016/j.scitotenv.2021.150924
183 R Li , F Zhang , D Wang , J Yang , M Li , J Zhu , X Zhou , H Han , C Li . Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432
https://doi.org/10.1038/ncomms2401
184 M Huang , J Lian , R Si , L Wang , X Pan , P Liu . Spatial separation of electrons and holes among ZnO polar {0001} and {101̅0} facets for enhanced photocatalytic performance. ACS Omega, 2022, 7(30): 26844–26852
https://doi.org/10.1021/acsomega.2c03244
185 W Wang , Y Zhou , Y Wen , Y Ni , C Lu , Z Xu . Effect of destructive {001}–{101} heterojunction on separating photo-generated electrons and holes of anatase TiO2. Materials Letters, 2015, 158: 29–31
https://doi.org/10.1016/j.matlet.2015.05.049
186 C Hu , S Tu , N Tian , T Ma , Y Zhang , H Huang . Photocatalysis enhanced by external fields. Angewandte Chemie International Edition, 2021, 60(30): 16309–16328
https://doi.org/10.1002/anie.202009518
187 Z Jiang , H Wang , H Huang , C Cao . Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 2004, 56(5): 503–508
https://doi.org/10.1016/j.chemosphere.2004.02.006
188 H G Yang , C H Sun , S Z Qiao , J Zou , G Liu , S C Smith , H M Cheng , G Q Lu . Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
https://doi.org/10.1038/nature06964
189 J Xiong , J Di , J Xia , W Zhu , H Li . Surface defect engineering in 2D nanomaterials for photocatalysis. Advanced Functional Materials, 2018, 28(39): 1801983
https://doi.org/10.1002/adfm.201801983
190 J Di , C Zhu , M Ji , M Duan , R Long , C Yan , K Gu , J Xiong , Y She , J Xia . et al.. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57(45): 14847–14851
https://doi.org/10.1002/anie.201809492
191 D Maarisetty , R Mary , D R Hang , P Mohapatra , S S Baral . The role of material defects in the photocatalytic CO2 reduction: interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64: 102175
192 X Yan , L Zhuang , Z Zhu , X Yao . Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345
https://doi.org/10.1039/D0NR08976A
193 P Niu , G Liu , H Cheng . Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 2012, 116(20): 11013–11018
https://doi.org/10.1021/jp301026y
194 H Li , J Li , Z Ai , F Jia , L Zhang . Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138
https://doi.org/10.1002/anie.201705628
195 X Xue , R Chen , H Chen , Y Hu , Q Ding , Z Liu , L Ma , G Zhu , W Zhang , Q Yu . et al.. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Letters, 2018, 18(11): 7372–7377
https://doi.org/10.1021/acs.nanolett.8b03655
196 Z Zafar , S Yi , J Li , C Li , Y Zhu , A Zada , W Yao , Z Liu , X Yue . Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Science, 2022, 5(1): 68–114
197 Z Jiang , C Lü , H Wu . Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44(12): 4165–4170
https://doi.org/10.1021/ie049155w
198 T M Suzuki , S Yoshino , T Takayama , A Iwase , A Kudo , T Morikawa . Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1–xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chemical Communications, 2018, 54(72): 10199–10202
https://doi.org/10.1039/C8CC05505J
199 M Mifsud , S Gargiulo , S Iborra , I W C E Arends , F Hollmann , A Corma . Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5(1): 3145
https://doi.org/10.1038/ncomms4145
200 C Ruckebusch , M Sliwa , P Pernot , A de Juan , R Tauler . Comprehensive data analysis of femtosecond transient absorption spectra: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(1): 1–27
https://doi.org/10.1016/j.jphotochemrev.2011.10.002
201 Y Jiang , R Long , Y Xiong . Regulating C–C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chemical Science, 2019, 10(31): 7310–7326
https://doi.org/10.1039/C9SC02014D
202 W Ma , Z Chen , J Bu , Z Liu , J Li , C Yan , L Cheng , L Zhang , H Zhang , J Zhang . et al.. π-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon. Journal of Materials Chemistry A, 2022, 10(11): 6122–6128
https://doi.org/10.1039/D1TA08002D
203 L Wang , H Bao , H Lin , C Yang , J Song , X Huang . An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Applied Catalysis A: General, 2022, 641: 118685
https://doi.org/10.1016/j.apcata.2022.118685
204 Z Huang , L Wang , C Yang , J Chen , G Zhao , X Huang . A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab on a Chip, 2022, 22(15): 2878–2885
https://doi.org/10.1039/D2LC00398H
205 S Ren , Z Wang , M Bilal , Y Feng , Y Jiang , S Jia , J Cui . Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. International Journal of Biological Macromolecules, 2020, 155: 110–118
https://doi.org/10.1016/j.ijbiomac.2020.03.177
[1] Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst[J]. Front. Chem. Sci. Eng., 2024, 18(2): 17-.
[2] Yuxin Li, Junxin Guo, Rui Han, Zhao Wang. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties[J]. Front. Chem. Sci. Eng., 2024, 18(2): 15-.
[3] Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
[4] Rui Cui, Dongnv Jin, Gaojie Jiao, Zhendong Liu, Jiliang Ma, Runcang Sun. Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for efficient photocatalytic degradation of methylene blue[J]. Front. Chem. Sci. Eng., 2023, 17(7): 918-929.
[5] Da Guo, Guisheng Qi, Dong Chen, Jiabao Niu, Youzhi Liu, Weizhou Jiao. Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packed bed[J]. Front. Chem. Sci. Eng., 2023, 17(4): 460-469.
[6] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[7] Shiqing Ma, Chundong Peng, Zeyu Jia, Yanmei Feng, Kai Chen, Hao Ding, Daimei Chen, Zhong-Yong Yuan. Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1718-1727.
[8] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[9] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[10] Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang. Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion[J]. Front. Chem. Sci. Eng., 2020, 14(6): 997-1005.
[11] Xinghong Duo, Lingchuang Bai, Jun Wang, Jintang Guo, Xiangkui Ren, Shihai Xia, Wencheng Zhang, Abraham Domb, Yakai Feng. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation[J]. Front. Chem. Sci. Eng., 2020, 14(5): 889-901.
[12] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[13] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[14] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[15] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed