Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 50    https://doi.org/10.1007/s11705-024-2409-1
Selective hydrodeoxygenation of guaiacol to cyclohexanol using activated hydrochar-supported Ru catalysts
Kaile Li1, Shijie Yu2(), Qinghai Li1, Yanguo Zhang1, Hui Zhou1()
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
2. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
 Download: PDF(7428 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lignin, an abundant aromatic polymer in nature, has received significant attention for its potential in the production of bio-oils and chemicals owing to increased resource availability and environmental issues. The hydrodeoxygenation of guaiacol, a lignin-derived monomer, can produce cyclohexanol, a nylon precursor, in a carbon-negative and environmentally friendly manner. This study explored the porous properties and the effects of activation methods on the Ru-based catalyst supported by environmentally friendly and cost-effective hydrochar. Highly selective cleavage of Caryl–O bonds was achieved under mild conditions (160 °C, 0.2 MPa H2, and 4 h), and alkali activation further improved the catalytic activity. Various characterization methods revealed that hydrothermal treatment and alkali activation relatively contributed to the excellent performance of the catalysts and influenced their porous structure and Ru dispersion. X-ray photoelectron spectroscopy results revealed an increased formation of metallic ruthenium, indicating the effective regulation of interaction between active sites and supports. This synergistic approach used in this study, involving the valorization of cellulose-derived hydrochar and the selective production of nylon precursors from lignin-derived guaiacol, indicated the comprehensive and sustainable utilization of biomass resources.

Keywords hydrochar      guaiacol      cyclohexanol      activation      full-component utilization     
Corresponding Author(s): Shijie Yu,Hui Zhou   
Just Accepted Date: 17 January 2024   Issue Date: 04 March 2024
 Cite this article:   
Kaile Li,Shijie Yu,Qinghai Li, et al. Selective hydrodeoxygenation of guaiacol to cyclohexanol using activated hydrochar-supported Ru catalysts[J]. Front. Chem. Sci. Eng., 2024, 18(5): 50.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2409-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/50
Fig.1  Selective hydrodeoxygenation of guaiacol to cyclohexanol using hydrochar-supported Ru catalyst (Ru/hydrochar).
CatalystConversion/%Selectivity/%
CyclohexanolCyclohexanonePhenol2-Methoxycyclohexanol
Ru/AC44.261.98.130.0
Ru/hydrochar19.145.08.030.116.9
Ru/PC28.437.16.539.017.4
Tab.1  Ruthenium-catalyzed hydrodeoxygenation of guaiacola)
Fig.2  Effect of reaction temperature on guaiacol conversion and product distribution. Reaction conditions: guaiacol/Ru molar ratio 80; initial H2 pressure 0.2 MPa; reaction time 4 h.
Fig.3  Effect of initial H2 pressure on guaiacol conversion and product distribution. Reaction conditions: guaiacol/Ru molar ratio 80; temperature 160 °C; reaction time 4 h.
Fig.4  Effect of reaction time on guaiacol conversion and product yield. Reaction conditions: guaiacol/Ru molar ratio 80; temperature 160 °C; initial H2 pressure 0.2 MPa.
Fig.5  SEM, N2-sorption curves and corresponding pore size distributions of hydrochar (a, c) before and (b, d) after activation.
Fig.6  (a) TEM image of Ru/AHC catalyst, and elemental mappings for (b) Ru, (c) C, and (d) O.
Fig.7  FTIR spectra of hydrochar before and after activation.
Fig.8  XPS spectra of (a) O 1s and (b) C 1s + Ru 3d over Ru/hydrochar and Ru/AHC.
Fig.9  Effect of activation on guaiacol conversion and product distribution. Reaction conditions: guaiacol/Ru molar ratio 80; temperature 160 °C; initial H2 pressure 0.2 MPa; reaction time 4 h.
Fig.10  Proposed pathway for guaiacol hydrodeoxygenation.
1 J Zakzeski , P C Bruijnincx , A L Jongerius , B M Weckhuysen . The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 2010, 110(6): 3552–3599
https://doi.org/10.1021/cr900354u
2 W Liu , H Jiang , H Yu . Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry, 2015, 17(11): 4888–4907
https://doi.org/10.1039/C5GC01054C
3 Y Zhou , Q Zeng , H He , K Wu , F Liu , X Li . Role of methoxy and Cα-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds. Green Energy & Environment, 2024, 9(1): 114–125
https://doi.org/10.1016/j.gee.2022.05.006
4 A Kumar , J Anushree , T Kumar . Utilization of lignin: a sustainable and eco-friendly approach. Journal of the Energy Institute, 2020, 93(1): 235–271
https://doi.org/10.1016/j.joei.2019.03.005
5 W Liu , W You , W Sun , W Yang , A Korde , Y Gong , Y Deng . Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system. Nature Energy, 2020, 5(10): 759–767
https://doi.org/10.1038/s41560-020-00680-x
6 H Zhou , H Wang , F A Perras , P Naik , M Pruski , A D Sadow , I I Slowing . Two-step conversion of kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22(14): 4676–4682
https://doi.org/10.1039/D0GC01220C
7 M Zhou , Y Wang , Y Wang , G Xiao . Catalytic conversion of guaiacol to alcohols for bio-oil upgrading. Journal of Energy Chemistry, 2015, 24(4): 425–431
https://doi.org/10.1016/j.jechem.2015.06.012
8 V Sharma , T Getahun , M Verma , A Villa , N Gupta . Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: a powerful tool for the generation of non-petroleum chemical products including hydrocarbons. Renewable & Sustainable Energy Reviews, 2020, 133: 110280
https://doi.org/10.1016/j.rser.2020.110280
9 X Liu , W Jia , G Xu , Y Zhang , Y Fu . Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8594–8601
https://doi.org/10.1021/acssuschemeng.7b01047
10 G Xue , L Yin , S Shao , G Li . Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology, 2022, 33(7): 072003
https://doi.org/10.1088/1361-6528/ac385f
11 K Zhang , Q Meng , H Wu , J Yan , X Mei , P An , L Zheng , J Zhang , M He , B Han . Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. Journal of the American Chemical Society, 2022, 144(45): 20834–20846
https://doi.org/10.1021/jacs.2c08992
12 A Vomeri , M Stucchi , A Villa , C Evangelisti , A Beck , L Prati . New insights for the catalytic oxidation of cyclohexane to KA oil. Journal of Energy Chemistry, 2022, 70: 45–51
https://doi.org/10.1016/j.jechem.2022.02.008
13 M R Karimi Estahbanati , M Feilizadeh , A Babin , B Mei , G Mul , M C Iliuta . Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: a spectroscopic and kinetic study. Chemical Engineering Journal, 2020, 382: 122732
https://doi.org/10.1016/j.cej.2019.122732
14 C C Chiu , A Genest , A Borgna , N Rösch . Hydrodeoxygenation of guaiacol over Ru (0001): a DFT study. ACS Catalysis, 2014, 4(11): 4178–4188
https://doi.org/10.1021/cs500911j
15 D Laurenti , P Afanasiev , C Geantet . Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Applied Catalysis B: Environmental, 2011, 101(3-4): 239–245
16 D Singh , P L Dhepe . Understanding the influence of alumina supported ruthenium catalysts synthesis and reaction parameters on the hydrodeoxygenation of lignin derived monomers. Molecular Catalysis, 2020, 480: 110525
https://doi.org/10.1016/j.mcat.2019.110525
17 B Han , Z Bao , T Liu , H Zhou , G Zhuang , X Zhong , S Deng , J Wang . Enhanced catalytic performances for guaiacol aqueous phase hydrogenation over ruthenium supported on mesoporous TiO2 hollow spheres embedded with SiO2 nanoparticles. ChemistrySelect, 2017, 2(29): 9599–9606
https://doi.org/10.1002/slct.201702013
18 Y Nakagawa , M Ishikawa , M Tamura , K Tomishige . Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green Chemistry, 2014, 16(4): 2197–2203
https://doi.org/10.1039/C3GC42322K
19 Q Xu , Y Shi , L Yang , G Fan , F Li . The promotional effect of surface Ru decoration on the catalytic performance of Co-based nanocatalysts for guaiacol hydrodeoxygenation. Molecular Catalysis, 2020, 497: 111224
https://doi.org/10.1016/j.mcat.2020.111224
20 S Yu , X Dong , P Zhao , Z Luo , Z Sun , X Yang , Q Li , L Wang , Y Zhang , H Zhou . Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications, 2022, 13(1): 3616
https://doi.org/10.1038/s41467-022-31352-x
21 I B Adilina , R R Widjaya , L N Hidayati , E Supriadi , M Safaat , F Oemry , E Restiawaty , Y Bindar , S F Parker . Understanding the surface characteristics of biochar and its catalytic activity for the hydrodeoxygenation of guaiacol. Catalysts, 2021, 11(12): 1434
https://doi.org/10.3390/catal11121434
22 M Chen , H Li , Y Wang , Z Tang , W Dai , C Li , Z Yang , J Wang . Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol. Applied Energy, 2023, 332: 120489
https://doi.org/10.1016/j.apenergy.2022.120489
23 T Li , H Li , G Huang , X Shen , S Wang , C Li . Transforming biomass tar into a highly active Ni-based carbon-supported catalyst for selective hydrogenation-transalkylation of guaiacol. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104976
https://doi.org/10.1016/j.jaap.2020.104976
24 M Zhou , J Ye , P Liu , J Xu , J Jiang . Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8824–8835
https://doi.org/10.1021/acssuschemeng.7b01615
25 A R Gollakota , M Reddy , M D Subramanyam , N Kishore . A review on the upgradation techniques of pyrolysis oil. Renewable & Sustainable Energy Reviews, 2016, 58: 1543–1568
https://doi.org/10.1016/j.rser.2015.12.180
26 W Song , Y Liu , E Baráth , C Zhao , J A Lercher . Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chemistry, 2015, 17(2): 1204–1218
https://doi.org/10.1039/C4GC01798F
27 E Latifi , A D Marchese , M C W Hulls , D V Soldatov , M Schlaf . [Ru(triphos)(CH3CN)3](OTf)2 as a homogeneous catalyst for the hydrogenation of biomass derived 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium. Green Chemistry, 2017, 19(19): 4666–4679
https://doi.org/10.1039/C7GC01956D
28 A Bjelić , M Grilc , B Likozar . Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: intrinsic microkinetics and transport phenomena. Chemical Engineering Journal, 2018, 333: 240–259
https://doi.org/10.1016/j.cej.2017.09.135
29 M Ishikawa , M Tamura , Y Nakagawa , K Tomishige . Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru-Mn catalyst. Applied Catalysis B: Environmental, 2016, 182: 193–203
https://doi.org/10.1016/j.apcatb.2015.09.021
30 S Yu , P Zhao , X Yang , Q Li , B A Mohamed , J M Saad , Y Zhang , H Zhou . Low-temperature hydrothermal carbonization of pectin enabled by high pressure. Journal of Analytical and Applied Pyrolysis, 2022, 166: 105627
https://doi.org/10.1016/j.jaap.2022.105627
31 X Wang , M Arai , Q Wu , C Zhang , F Zhao . Hydrodeoxygenation of lignin-derived phenolics—a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22(23): 8140–8168
https://doi.org/10.1039/D0GC02610G
32 W Song , Y He , S Lai , W Lai , X Yi , W Yang , X Jiang . Selective hydrodeoxygenation of lignin phenols to alcohols in the aqueous phase over a hierarchical Nb2O5-supported Ni catalyst. Green Chemistry, 2020, 22(5): 1662–1670
https://doi.org/10.1039/C9GC03842F
33 S Yu , X Yang , Q Li , Y Zhang , H Zhou . Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure. Green Energy & Environment, 2023, 8(4): 1216–1227
https://doi.org/10.1016/j.gee.2023.01.001
34 M Sevilla , A B Fuertes . The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 2009, 47(9): 2281–2289
https://doi.org/10.1016/j.carbon.2009.04.026
35 Q Lin , C Zhang , X Wang , B Cheng , N Mai , J Ren . Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catalysis Today, 2019, 319: 31–40
https://doi.org/10.1016/j.cattod.2018.03.070
36 B W Chieng , S H Lee , N A Ibrahim , Y Y Then , Y Y Loo . Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 2017, 9(12): 355
https://doi.org/10.3390/polym9080355
37 O Norouzi , S Pourhosseini , H R Naderi , F Di Maria , A Dutta . Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Scientific Reports, 2021, 11(1): 5387
https://doi.org/10.1038/s41598-021-84979-z
38 K S Eun , K J Hu , K D Keun , H H Chul , K Y Lee , K H Joo . Na-modified carbon nitride as a leach-resistant and cost-effective solid base catalyst for biodiesel production. Fuel, 2023, 341: 127548
https://doi.org/10.1016/j.fuel.2023.127548
39 L Wang , H Zhang , G Cao , W Zhang , H Zhao , Y Yang . Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries. Electrochimica Acta, 2015, 186: 654–663
https://doi.org/10.1016/j.electacta.2015.11.007
40 D Mandrino , B Podgornik . XPS investigations of tribofilms formed on CrN coatings. Applied Surface Science, 2017, 396: 554–559
https://doi.org/10.1016/j.apsusc.2016.10.194
41 X Chen , X Wang , D Fang . A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes, and Carbon Nanostructures, 2020, 28(12): 1048–1058
https://doi.org/10.1080/1536383X.2020.1794851
42 Y Dang , J Wang , J He , X Feng , Z Tobin , L A Achola , W Zhao , L Wen , S L Suib . RuO2-NiO nanosheets on conductive nickel foam for reliable and regeneratable seawater splitting. ACS Applied Nano Materials, 2022, 5(9): 13308–13318
https://doi.org/10.1021/acsanm.2c02988
43 C C C Silva , N F Ribeiro , M M Souza , D A Aranda . Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Processing Technology, 2010, 91(2): 205–210
https://doi.org/10.1016/j.fuproc.2009.09.019
44 J Long , S Shu , Q Wu , Z Yuan , T Wang , Y Xu , X Zhang , Q Zhang , L Ma . Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Conversion and Management, 2015, 105: 570–577
https://doi.org/10.1016/j.enconman.2015.08.016
45 C Zhang , C Jia , Y Cao , Y Yao , S Xie , S Zhang , H Lin . Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chemistry, 2019, 21(7): 1668–1679
https://doi.org/10.1039/C8GC04017F
46 M A Hossain , T K Phung , M S Rahaman , S Tulaphol , J B Jasinski , N Sathitsuksanoh . Catalytic cleavage of the β-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Applied Catalysis A, General, 2019, 582: 117100
https://doi.org/10.1016/j.apcata.2019.05.034
47 M J Gilkey , P Panagiotopoulou , A V Mironenko , G R Jenness , D G Vlachos , B Xu . Mechanistic insights into metal lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran. ACS Catalysis, 2015, 5(7): 3988–3994
https://doi.org/10.1021/acscatal.5b00586
48 M Zhang , L Xiang , G Fan , L Yang , F Li . Unveiling the role of surface basic sites on ruthenium-based nanocatalysts for enhanced hydrodeoxygenation of guaiacol. Molecular Catalysis, 2022, 533: 112794
https://doi.org/10.1016/j.mcat.2022.112794
49 H Xu , J Ju , H Li . Toward efficient heterogeneous catalysts for in-situ hydrodeoxygenation of biomass. Fuel, 2022, 320: 123891
https://doi.org/10.1016/j.fuel.2022.123891
[1] FCE-23088-of-LK_suppl_1 Download
[1] Fan Sun, Huijiang Huang, Wei Liu, Lu Wang, Yan Xu, Yujun Zhao. Reconstruction of Cu–ZnO catalyst by organic acid and deactivation mechanism in liquid-phase hydrogenation of dimethyl succinate to 1,4-butanediol[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1311-1319.
[2] Jiali Bai, Jiamei Huang, Qiyun Yu, Muslum Demir, Eda Akgul, Bilge Nazli Altay, Xin Hu, Linlin Wang. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1122-1130.
[3] Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao. Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components[J]. Front. Chem. Sci. Eng., 2023, 17(7): 942-953.
[4] Junlei Xiao, Hua Zhang, Yifan Wang, Chunmei Zhang, Shuijian He, Shaohua Jiang. Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density[J]. Front. Chem. Sci. Eng., 2023, 17(4): 387-394.
[5] Shengshuo Xu, Zhenying Lu, Jinling Wang, Guangtuan Huang, Hualin Wang, Xuejing Yang. Precursor-driven structural tailoring of iron oxychloride for enhanced heterogeneous Fenton activity[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1533-1543.
[6] Shangjun Fu, Kuiyi You, Zhenpan Chen, Taobo Liu, Qiong Wang, Fangfang Zhao, Qiuhong Ai, Pingle Liu, He’an Luo. Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1211-1223.
[7] Juntian Niu, Haiyu Liu, Yan Jin, Baoguo Fan, Wenjie Qi, Jingyu Ran. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1485-1492.
[8] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[9] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[10] Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate[J]. Front. Chem. Sci. Eng., 2018, 12(1): 194-208.
[11] Guixian Song, Xionggang Wu, Feng Xin, Xiaohong Yin. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol[J]. Front. Chem. Sci. Eng., 2017, 11(2): 197-204.
[12] Renxing Wang,Zhenyu Liu,Leiming Ji,Xiaojin Guo,Xi Lin,Junfei Wu,Qingya Liu. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Front. Chem. Sci. Eng., 2016, 10(4): 517-525.
[13] Xiaoxue SUN,Yuzhu SUN,Jianguo YU. Leaching of aluminum from coal spoil by mechanothermal activation[J]. Front. Chem. Sci. Eng., 2015, 9(2): 216-223.
[14] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[15] Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed