Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 56    https://doi.org/10.1007/s11705-024-2415-3
Insight into the adsorption behavior and mechanism of trace impurities from H2O2 solution on functionalized zirconia by tuning the structure of amino groups
Yu Meng1, Yitong Wang1, Guozhu Li1,2, Guozhu Liu1,2, Li Wang1,2()
1. Key Laboratory for Green Chemical Technology of Ministry Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 Download: PDF(1134 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Primary, secondary and tertiary amino-functionalized zirconia (ZrO2−NH2, ZrO2−NH and ZrO2−N) was synthesized by the postgrafting method for the adsorption removal of typical metallic ions, phosphate and total oxidizable carbon from a real H2O2 solution. ZrO2−NH2, ZrO2−NH and ZrO2−N exhibited similar pore sizes and sequentially increased zeta potentials. The adsorption results of single and binary simulated solutions showed that the removal efficiency increased in the order of Fe3+ > Al3+ > Ca2+ > Na+. There is competitive adsorption between metallic ions, and Fe3+ has an advantage over the other metals, with a removal efficiency of 90.7%. The coexisting phosphate could promote the adsorption of metallic ions, while total oxidizable carbon had no effect on adsorption. The adsorption results of the real H2O2 solution showed that ZrO2−NH2 exhibited the best adsorption affinity for metallic ions, as did phosphate and total oxidizable carbon, with a total adsorption capacity of 120.9 mg·g–1. Density functional theory calculations revealed that the adsorption process of metallic ions involves electron transfer from N atoms to metals and the formation of N-metal bonds.

Keywords adsorption      metallic ion      phosphate      total oxidizable carbon      zirconia      H2O2     
Corresponding Author(s): Li Wang   
Just Accepted Date: 24 January 2024   Issue Date: 23 April 2024
 Cite this article:   
Yu Meng,Yitong Wang,Guozhu Li, et al. Insight into the adsorption behavior and mechanism of trace impurities from H2O2 solution on functionalized zirconia by tuning the structure of amino groups[J]. Front. Chem. Sci. Eng., 2024, 18(5): 56.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2415-3
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/56
Fig.1  (a) XRD patterns, (b) FTIR spectra, (c) nitrogen adsorption-desorption isotherms and (d) pore size distributions of ZrO2, ZrO2?NH2, ZrO2?NH and ZrO2?N.
SampleSa)/(m2·g–1)Vb)/(cm3·g–1)Dc)/nmNd)/%
ZrO2300.00.2783.73
ZrO2?NH2176.60.1763.621.24
ZrO2?NH181.20.1693.491.24
ZrO2?N192.50.1963.661.23
Tab.1  Textural properties of the adsorbents
Fig.2  XPS spectra of (a–d) O 1s and (e–g) N 1s and (h) zeta potentials for ZrO2, ZrO2?NH2, ZrO2?NH and ZrO2?N.
Fig.3  Removal efficiency of metallic ions on ZrO2, ZrO2?NH2, ZrO2?NH and ZrO2?N from (a) a single-impurity simulated solution, (b) a binary-impurity solution of Al3+?M (M = Na+, Ca2+ and Fe3+ ) and (c) Al3+?phosphate and Al3+?TMB (initial content: CAl3+ = 1.96 mg·L–1, CNa+ = 1.83 mg·L–1, CCa2+ = 1.80 mg·L–1, CFe3+ = 2.09 mg·L–1, Cphosphate = 108.1 mg·L–1, CTMB = 46.9 mg·L–1; time = 1 h; temperature = 30 °C; solution/adsorbent = 20 mL/20 mg).
Fig.4  Removal efficiency of (a) metallic ions and (b) phosphate and TOC from real H2O2 solution (initial concentration of H2O2 = 30.28%; initial value of pH = 2.26; contents of various impurities are shown in Tables S1 and S2; time = 1 h; temperature = 30 °C; solution/adsorbent = 20 mL/20 mg).
AdsorbentCH2O2a)/%CZr4+b)/(× 10?3 mg·L–1)qec)/(mg·g–1)
ZrO229.336.263.7
ZrO2?NH228.8310.3120.9
ZrO2?NH28.937.6112.0
ZrO2?N28.986.5107.8
Tab.2  Concentration of the H2O2 solution and content of Zr4+after adsorption and total adsorption capacity
Fig.5  Adsorption isotherms of Al3+ at 30 °C (time = 1 h and solution/adsorbent = 20 mL/20 mg): (a) Langmuir model, (b) Freundlich model and (c) Sips model; adsorption kinetics of Al3+ at 30 °C and 6 mg·L–1 (solution/adsorbent = 20 mL/20 mg), (d) pseudo-first-order model, (e) pseudo-second-order model, (f) Elovich model and (g) Weber-Morris model.
Adsorbent modelAdsorption energy/eVBond length/?
AlCl3NaClCaCl2FeCl3N–AlN–NaN–CaN–Fe
ZrO2?NH2–1.48–0.99–1.18–1.582.032.492.411.95
ZrO2?NH–1.57–0.80–1.14–1.732.052.492.441.95
ZrO2?N–0.98–0.36–0.98–1.242.16a)2.592.03
Tab.3  Adsorption energy and N–M (M = Al, Na, Ca and Fe) bond length of the optimal configurations
1 H B Li , B Zheng , Z Y Pan , B N Zong , M H Qiao . Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Frontiers of Chemical Science and Engineering, 2018, 12(1): 124–131
https://doi.org/10.1007/s11705-017-1676-5
2 E X Yuan , X W Ren , L Wang , W T Zhao . A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst. Frontiers of Chemical Science and Engineering, 2017, 11(2): 177–184
https://doi.org/10.1007/s11705-016-1604-0
3 R Abejón , A Garea , A Irabien . Optimum design of reverse osmosis systems for hydrogen peroxide ultrapurification. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(12): 3718–3730
https://doi.org/10.1002/aic.13763
4 Y Zhang , C Y Zhang , G Z Liu , L Wang , Z Y Pan . Ce-doped SBA-15 supported Pd catalyst for efficient hydrogenation of 2-ethyl-anthraquinone. Applied Surface Science, 2023, 616: 156515
https://doi.org/10.1016/j.apsusc.2023.156515
5 F Zhang , M Chen , X W Jia , W Xu , N Shi . Research on the effect of resin on the thermal stability of hydrogen peroxide. Process Safety and Environmental Protection, 2019, 126: 1–6
https://doi.org/10.1016/j.psep.2019.03.040
6 R Abejón , A Garea , A Irabien . Effective lifetime study of commercial reverse osmosis membranes for optimal hydrogen peroxide ultrapurification processes. Industrial & Engineering Chemistry Research, 2013, 52(48): 17270–17284
https://doi.org/10.1021/ie402895p
7 Q Lin , Y B Jiang , J M Geng , Y Qian . Removal of organic impurities with activated carbons for ultra-pure hydrogen peroxide preparation. Chemical Engineering Journal, 2008, 139(2): 264–271
https://doi.org/10.1016/j.cej.2007.07.091
8 Y T Wang , Y Zhang , L Wang . Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from H2O2 solution with amino-functionalized zirconia as adsorbents. Frontiers of Chemical Science and Engineering, 2023, 17(4): 470–482
https://doi.org/10.1007/s11705-022-2231-6
9 N S Alharbi , B W Hu , T Hayat , S O Rabah , A Alsaedi , L Zhuang , X K Wang . Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135
https://doi.org/10.1007/s11705-020-1923-z
10 A Akbari , N Arsalani , B Eftekhari-Sis , M Amini , G Gohari , E Jabbari . Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Frontiers of Chemical Science and Engineering, 2019, 13(3): 563–573
https://doi.org/10.1007/s11705-018-1784-x
11 L Ouni , A Ramazani , S Taghavi Fardood . An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 2019, 13(2): 274–295
https://doi.org/10.1007/s11705-018-1765-0
12 B X Wang , K Y Wu , T H Liu , Z K Cheng , Y Liu , Y F Liu , Y Z Niu . Feasible synthesis of bifunctional polysilsesquioxane microspheres for robust adsorption of Hg(II) and Ag(I): behavior and mechanism. Journal of Hazardous Materials, 2023, 442: 130121
https://doi.org/10.1016/j.jhazmat.2022.130121
13 L P Lang , B X Wang , T H Liu , J X Wang , L L Zhu , Y F Liu , Y Z Niu . Homogeneous synthesis of schiff base modified PAMAM dendrimers/silica for efficient adsorption of Hg(II). Chemical Engineering Journal, 2023, 477: 147310
https://doi.org/10.1016/j.cej.2023.147310
14 L P Luan , B T Tang , Y F Liu , A L Wang , B B Zhang , W L Xu , Y Z Niu . Selective capture of Hg(II) and Ag(I) from water by sulfur-functionalized polyamidoamine dendrimer/magnetic Fe3O4 hybrid materials. Separation and Purification Technology, 2021, 257: 117902
https://doi.org/10.1016/j.seppur.2020.117902
15 L F Koong , K F Lam , J Barford , G McKay . A comparative study on selective adsorption of metal ions using aminated adsorbents. Journal of Colloid and Interface Science, 2013, 395: 230–240
https://doi.org/10.1016/j.jcis.2012.12.047
16 R Shahrokhi-Shahraki , C Benally , M G El-Din , J Park . High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere, 2021, 264: 128455
https://doi.org/10.1016/j.chemosphere.2020.128455
17 J W Pan , B Y Gao , K Y Guo , Y Gao , X Xu , Q Y Yue . Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: theoretical calculation and electronegativity difference. Science of the Total Environment, 2022, 805: 150413
https://doi.org/10.1016/j.scitotenv.2021.150413
18 X Jiang , S Su , J Rao , S J Li , T Lei , H P Bai , S X Wang , X J Yang . Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb(II) and Cu(II) from water. Journal of Environmental Chemical Engineering, 2021, 9(5): 105959
https://doi.org/10.1016/j.jece.2021.105959
19 Y Cao , X Hu , C Q Zhu , S X Zhou , R Li , H L Shi , S Y Miao , M Vakili , W Wang , D L Qi . Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb(II) removal. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 600: 125004
https://doi.org/10.1016/j.colsurfa.2020.125004
20 Y P Yan , B Wan , M Mansor , X M Wang , Q Zhang , A Kappler , X H Feng . Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: a review. Science of the Total Environment, 2022, 803: 149918
https://doi.org/10.1016/j.scitotenv.2021.149918
21 X M Ren , X L Tan , T Hayat , A Alsaedi , X K Wang . Co-sequestration of Zn(II) and phosphate by gamma-Al2O3: from macroscopic to microscopic investigation. Journal of Hazardous Materials, 2015, 297: 134–145
https://doi.org/10.1016/j.jhazmat.2015.04.079
22 K F Lam , K L Yeung , G McKay . Selective mesoporous adsorbents for Cr2O72– and Cu2+ separation. Microporous and Mesoporous Materials, 2007, 100(1−3): 191–201
https://doi.org/10.1016/j.micromeso.2006.10.037
23 J Antelo , F Arce , S Fiol . Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chemical Geology, 2015, 410: 53–62
https://doi.org/10.1016/j.chemgeo.2015.06.011
24 M D Zhai , B M Fu , Y H Zhai , W J Wang , A Maroney , A A Keller , H T Wang , J M Chovelon . Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: a critical review. Water Research, 2023, 236: 119924
https://doi.org/10.1016/j.watres.2023.119924
25 N Yao , C Li , J Y Yu , Q Q Xu , S Y Wei , Z Q Tian , Z Yang , W B Yang , J Shen . Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Separation and Purification Technology, 2020, 236: 116278
https://doi.org/10.1016/j.seppur.2019.116278
26 A Stein , B J Melde , R C Schroden . Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Advanced Materials, 2000, 12(19): 1403–1419
https://doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
27 T Yokoi , H Yoshitake , T Tatsumi . Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry, 2004, 14(6): 951–957
https://doi.org/10.1039/b310576h
28 X M Liu , S F Bai , H D Zhuang , Z F Yan . Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6(1): 47–52
https://doi.org/10.1007/s11705-011-1170-4
29 Y Su , H Cui , Q Li , S A Gao , J K Shang . Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 2013, 47(14): 5018–5026
https://doi.org/10.1016/j.watres.2013.05.044
30 S Y Bao , W W Yang , Y J Wang , Y S Yu , Y Y Sun , K F Li . PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: behaviors and mechanisms. Chemical Engineering Journal, 2020, 399: 125762
https://doi.org/10.1016/j.cej.2020.125762
31 S W Lv , J M Liu , C Y Li , N Zhao , Z H Wang , S Wang . A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chemical Engineering Journal, 2019, 375: 122111
https://doi.org/10.1016/j.cej.2019.122111
32 F Bahalkeh , M Habibi Juybari , R Z Zafar Mehrabian , M Ebadi . Removal of brilliant red dye (Brilliant Red E-4BA) from wastewater using novel chitosan/SBA-15 nanofiber. International Journal of Biological Macromolecules, 2020, 164: 818–825
https://doi.org/10.1016/j.ijbiomac.2020.07.035
33 J Shen , F Cao , S Q Liu , C J Wang , R G Chen , K Chen . Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite. Frontiers of Chemical Science and Engineering, 2022, 16(3): 408–419
https://doi.org/10.1007/s11705-021-2054-x
34 F L Li , C Chen , Y D Wang , W P Li , G L Zhou , H Q Zhang , J Zhang , J T Wang . Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater. Frontiers of Chemical Science and Engineering, 2021, 15(4): 984–997
https://doi.org/10.1007/s11705-020-2000-3
35 J A Park , J K Kang , S M Jung , J W Choi , S H Lee , V Yargeau , S B Kim . Investigating microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: surface chemistry, pore structures, and molecular characteristics. Chemosphere, 2020, 247: 125811
https://doi.org/10.1016/j.chemosphere.2020.125811
36 W Y Liu , X Q Liu , J M Chang , F Jiang , S S Pang , H J Gao , Y W Liao , S Yu . Efficient removal of Cr(VI) and Pb(II) from aqueous solution by magnetic nitrogen-doped carbon. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1185–1196
https://doi.org/10.1007/s11705-020-2032-8
37 Y M Zhao , X C Shan , Q D An , Z Y Xiao , S R Zhai . Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture. Chemical Engineering Journal, 2020, 398: 125561
https://doi.org/10.1016/j.cej.2020.125561
38 Y L Liu , J Xu , Z Cao , R Q Fu , C C Zhou , Z N Wang , X H Xu . Adsorption behavior and mechanism of Pb(II) and complex Cu(II) species by biowaste-derived char with amino functionalization. Journal of Colloid and Interface Science, 2020, 559: 215–225
https://doi.org/10.1016/j.jcis.2019.10.035
39 X Wang , Z Z Zhang , Y H Zhao , K Xia , Y F Guo , Z Qu , R B Bai . A mild and facile synthesis of amino functionalized CoFe2O4@SiO2 for Hg(II) removal. Nanomaterials, 2018, 8(9): 673
https://doi.org/10.3390/nano8090673
40 S M Yakout , H S Hassan . Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions. Molecules, 2014, 19(7): 9160–9172
https://doi.org/10.3390/molecules19079160
41 D Vishnu , B Dhandapani , G Vaishnavi , V Preethi . Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step-batch and column studies for the removal of copper and lead ions. Chemosphere, 2022, 286: 131572
https://doi.org/10.1016/j.chemosphere.2021.131572
42 M S Adly , S M El-Dafrawy , A A Ibrahim , S A El-Hakam , M S El-Shall . Efficient removal of heavy metals from polluted water with high selectivity for Hg(II) and Pb(II) by a 2-imino-4-thiobiuret chemically modified MIL-125 metal-organic framework. RSC Advances, 2021, 11(23): 13940–13950
https://doi.org/10.1039/D1RA00927C
43 W Li , S Z Zhang , X Q Shan . Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293(1−3): 13–19
https://doi.org/10.1016/j.colsurfa.2006.07.002
44 J Kecht , A Schlossbauer , T Bein . Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles. Chemistry of Materials, 2008, 20(23): 7207–7214
https://doi.org/10.1021/cm801484r
45 M Mozaffari Majd , V Kordzadeh-Kermani , V Ghalandari , A Askari , M Sillanpaa . Adsorption isotherm models: a comprehensive and systematic review (2010–2020). Science of the Total Environment, 2022, 812: 151334
https://doi.org/10.1016/j.scitotenv.2021.151334
46 Y X He , L M Zhang , X An , G P Wan , W J Zhu , Y M Luo . Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism. Science of the Total Environment, 2019, 688: 184–198
https://doi.org/10.1016/j.scitotenv.2019.06.175
47 J Mokrzycki , M Fedyna , M Marzec , J Szerement , R Panek , A Klimek , T Bajda , M Mierzwa-Hersztek . Copper ion-exchanged zeolite X from fly ash as an efficient adsorbent of phosphate ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2022, 10(6): 108567
https://doi.org/10.1016/j.jece.2022.108567
48 Moreno J J Gutiérrez , K Pan , Y Wang , W J Li . Computational study of APTES surface functionalization of diatom-like amorphous SiO2 surfaces for heavy metal adsorption. Langmuir, 2020, 36(20): 5680–5689
https://doi.org/10.1021/acs.langmuir.9b03755
49 K F Lam , C M Fong , K L Yeung , G McKay . Selective adsorption of gold from complex mixtures using mesoporous adsorbents. Chemical Engineering Journal, 2008, 145(2): 185–195
https://doi.org/10.1016/j.cej.2008.03.019
50 J E Efome , D Rana , T Matsuura , C Q Lan . Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Science of the Total Environment, 2019, 674: 355–362
https://doi.org/10.1016/j.scitotenv.2019.04.187
[1] FCE-23094-of-MY_suppl_1 Download
[1] Tauseef Munawar, Ambreen Bashir, Khalid Mujasam Batoo, Saman Fatima, Faisal Mukhtar, Sajjad Hussain, Sumaira Manzoor, Muhammad Naeem Ashiq, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal. Construction of robust and durable Cu2Se–V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(6): 65-.
[2] Guopei Zhang, Xiaoyang Zhang, Xiangwen Xing, Xiangru Kong, Lin Cui, Dong Yong. Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent: experimental and theoretical insights[J]. Front. Chem. Sci. Eng., 2024, 18(3): 32-.
[3] Li Zhao, Xinru Liu, Zihao Ye, Bin Hu, Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25-.
[4] Feng Zhang, Shuainan Xu, Xiumei Geng, Meixia Shan, Yatao Zhang. Recyclable hydrolyzed polymers of intrinsic microporosity-1/Fe3O4 magnetic composites as adsorbents for selective cationic dye adsorption[J]. Front. Chem. Sci. Eng., 2024, 18(2): 21-.
[5] Jiangyan Lu, Zhu Xiong, Yuhang Cheng, Qingwu Long, Kaige Dong, Hongguo Zhang, Dinggui Luo, Li Yu, Wei Zhang, Gaosheng Zhang. The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration[J]. Front. Chem. Sci. Eng., 2024, 18(2): 13-.
[6] Wen-Jie Jin, Yu Xin, Xian-Wei Cheng, Jin-Ping Guan, Guo-Qiang Chen. Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium phosphate[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1131-1139.
[7] Jiali Bai, Jiamei Huang, Qiyun Yu, Muslum Demir, Eda Akgul, Bilge Nazli Altay, Xin Hu, Linlin Wang. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1122-1130.
[8] Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao. Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components[J]. Front. Chem. Sci. Eng., 2023, 17(7): 942-953.
[9] Shangyuan Zhao, Fangjia Wang, Rui Zhou, Peisen Liu, Qizhong Xiong, Weifeng Zhang, Chaochun Zhang, Gang Xu, Xinxin Ye, Hongjian Gao. Fabrication of recyclable Fe3+ chelated aminated polypropylene fiber for efficient clean-up of phosphate wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 840-852.
[10] Shan Jiang, Jianfeng Xi, Hongqi Dai, Huining Xiao, Weibing Wu. Easily-manufactured paper-based materials with high porosity for adsorption/separation applications in complex wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 830-839.
[11] Huabin Wang, Dingxiang Chen, Yi Wen, Ting Cui, Ying Liu, Yong Zhang, Rui Xu. Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization: from batch solution to pilot-scale investigation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 880-892.
[12] Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134[J]. Front. Chem. Sci. Eng., 2023, 17(7): 853-866.
[13] Ruiqi Li, Kang Li, Wei Wang, Fan Zhang, Shichao Tian, Zhongqi Ren, Zhiyong Zhou. Highly selective and green recovery of lithium ions from lithium iron phosphate powders with ozone[J]. Front. Chem. Sci. Eng., 2023, 17(6): 749-758.
[14] Yitong Wang, Yue Zhang, Li Wang. Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from H2O2 solution with amino-functionalized zirconia as adsorbents[J]. Front. Chem. Sci. Eng., 2023, 17(4): 470-482.
[15] Xinyi Yang, Xiaolu Liu, Yanfang Liu, Xiao-Feng Wang, Zhongshan Chen, Xiangke Wang. Optimizing iodine capture performance by metal–organic framework containing with bipyridine units[J]. Front. Chem. Sci. Eng., 2023, 17(4): 395-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed